Created
October 30, 2014 16:36
-
-
Save tyrion/eb833e93314856a5d98a to your computer and use it in GitHub Desktop.
Perceptron
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import namedtuple | |
Input = namedtuple('Input', ['index', 'value']) | |
def identity(x): | |
return x | |
def step(x): | |
return 1 if x >= 0 else -1 | |
class OutputNeuron: | |
def __init__(self, weights, fn=identity): | |
self.order = len(weights) | |
self.weights = weights | |
self.inputs = [0] * self.order | |
self.fn = fn | |
def activate(self, input): | |
self.inputs[input.index] = input.value | |
return self.activate_next() | |
def activate_many(self, inputs): | |
for i, value in inputs: | |
self.inputs[i] = value | |
return self.activate_next() | |
def activate_all(self, inputs): | |
self.inputs = list(inputs) | |
return self.activate_next() | |
def activate_next(self): | |
return self.compute() | |
def compute(self): | |
return self.fn(sum(map(lambda x,y: x*y, self.weights, self.inputs))) | |
def train(self, table, h): | |
print('Train') | |
error = False | |
for inputs, output in table.items(): | |
y = self.activate_all(inputs) | |
print(self.weights, inputs, y, output) | |
if y != output: | |
error = True | |
for i in range(self.order): | |
self.weights[i] += h * inputs[i] * output | |
if error: | |
self.train(table, h) | |
def __repr__(self): | |
return 'Neuron I:{} O:{}'.format(self.inputs, self.compute()) | |
class Neuron(OutputNeuron): | |
def __init__(self, weights, synapsis, fn=identity): | |
super().__init__(weights, fn) | |
self.output = synapsis | |
def activate_next(self): | |
input = Input(self.output.index, self.compute()) | |
return self.output.neuron.activate(input) | |
if __name__ == '__main__': | |
n = OutputNeuron([0, 0, 0], step) | |
print(n) | |
table = { | |
(1, -1, -1): -1, | |
(1, -1, 1): -1, | |
(1, 1, -1): -1, | |
(1, 1, 1): 1 | |
} | |
n.train(table, 0.5) | |
print(n) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment