Last active
January 26, 2023 04:31
-
-
Save tzachz/c976a1080b6379ef861c142c16f1364a to your computer and use it in GitHub Desktop.
Apache Spark UserDefinedAggregateFunction combining maps
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.SparkContext | |
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction} | |
import org.apache.spark.sql.types._ | |
import org.apache.spark.sql.{Column, Row, SQLContext} | |
/*** | |
* UDAF combining maps, overriding any duplicate key with "latest" value | |
* @param keyType DataType of Map key | |
* @param valueType DataType of Value key | |
* @param merge function to merge values of identical keys | |
* @tparam K key type | |
* @tparam V value type | |
*/ | |
class CombineMaps[K, V](keyType: DataType, valueType: DataType, merge: (V, V) => V) extends UserDefinedAggregateFunction { | |
override def inputSchema: StructType = new StructType().add("map", dataType) | |
override def bufferSchema: StructType = inputSchema | |
override def dataType: DataType = MapType(keyType, valueType) | |
override def deterministic: Boolean = true | |
override def initialize(buffer: MutableAggregationBuffer): Unit = buffer.update(0, Map[K, V]()) | |
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = { | |
val map1 = buffer.getAs[Map[K, V]](0) | |
val map2 = input.getAs[Map[K, V]](0) | |
val result = map1 ++ map2.map { case (k,v) => k -> map1.get(k).map(merge(v, _)).getOrElse(v) } | |
buffer.update(0, result) | |
} | |
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = update(buffer1, buffer2) | |
override def evaluate(buffer: Row): Any = buffer.getAs[Map[K, V]](0) | |
} | |
object Example { | |
def main(args: Array[String]): Unit = { | |
import org.apache.spark.sql.functions._ | |
val sc: SparkContext = new SparkContext("local", "test") | |
val sqlContext = new SQLContext(sc) | |
import sqlContext.implicits._ | |
val input = sc.parallelize(Seq( | |
(1, Map("John" -> 12.5, "Alice" -> 5.5)), | |
(1, Map("Jim" -> 16.5, "Alice" -> 4.0)), | |
(2, Map("John" -> 13.5, "Jim" -> 2.5)) | |
)).toDF("id", "scoreMap") | |
// instantiate a CombineMaps with the relevant types: | |
val combineMaps = new CombineMaps[String, Double](StringType, DoubleType, _ + _) | |
// groupBy and aggregate | |
val result = input.groupBy("id").agg(combineMaps(col("scoreMap"))) | |
result.show(truncate = false) | |
// +---+--------------------------------------------+ | |
// |id |CombineMaps(scoreMap) | | |
// +---+--------------------------------------------+ | |
// |1 |Map(John -> 12.5, Alice -> 9.5, Jim -> 16.5)| | |
// |2 |Map(John -> 13.5, Jim -> 2.5) | | |
// +---+--------------------------------------------+ | |
} | |
} |
Some cells can be null, so you probably need to check for that using if (!input.isNullAt(0))
This was very helpful 👍
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Very nice example, thank you! I have a question, though. What purpose do the input and buffer schemas serve? I can't seem to get them to do anything. I had expected inputSchema to evaluate whether the correct columns and types were passed in, but that doesn't seem to be true.