Last active
August 31, 2015 06:50
-
-
Save tzutalin/912d1774d96266c4e76b to your computer and use it in GitHub Desktop.
classify_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import sys | |
import caffe | |
import os | |
import time | |
def convertbinarytonpy(binaryprotosrc, npytarget): | |
if os.path.exists(binaryprotosrc): | |
blob = caffe.proto.caffe_pb2.blobproto() | |
data = open( binaryprotosrc, 'rb' ).read() | |
blob.parsefromstring(data) | |
arr = np.array( caffe.io.blobproto_to_array(blob) ) | |
out = arr[0] | |
np.save(npytarget, out ) | |
model_file = 'deploy_nin.prototxt' | |
pretrained = 'nin_imagenet.caffemodel' | |
image_file = 'cat.jpg' | |
mean_file = 'imagenet_mean.npy' | |
img_size = (224, 224) | |
convertbinarytonpy('imagenet_mean.binaryproto', mean_file) | |
meanfile=np.load(mean_file).mean(1).mean(1) | |
caffe.set_mode_cpu() | |
net = caffe.classifier(model_file, pretrained, | |
mean=meanfile, | |
channel_swap=(2,1,0), | |
raw_scale=255, | |
image_dims=img_size) | |
input_image = caffe.io.load_image(image_file) | |
plt.imshow(input_image) | |
start_time = time.time() | |
prediction = net.predict([input_image]) # predict takes any number of images, and formats them for the caffe net automatically | |
end_time = time.time() | |
print '---------------------------------------------' | |
print 'takes ' + str(end_time - start_time) + ' secs' | |
print 'prediction shape:', prediction[0].shape | |
print 'predicted class:', prediction[0].argmax() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment