Created
July 25, 2024 04:41
-
-
Save ucalyptus2/794350462c6e7d2316ca8f4ddf74dfc3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import DataLoader | |
class Spectrum: | |
def __init__(self, model, train_loader, val_loader, device='cuda'): | |
self.model = model.to(device) | |
self.train_loader = train_loader | |
self.val_loader = val_loader | |
self.device = device | |
self.snr_threshold = None | |
def compute_snr(self, weight_matrix): | |
U, S, V = torch.svd(weight_matrix) | |
signal = S[S > self.snr_threshold] | |
noise = S[S <= self.snr_threshold] | |
snr = signal.sum() / (noise.sum() + 1e-5) | |
return snr | |
def select_layers(self): | |
snr_values = {} | |
for name, param in self.model.named_parameters(): | |
if 'weight' in name and param.requires_grad: | |
snr = self.compute_snr(param.data) | |
snr_values[name] = snr | |
sorted_snr = sorted(snr_values.items(), key=lambda item: item[1], reverse=True) | |
top_layers = [name for name, _ in sorted_snr[:int(0.25 * len(sorted_snr))]] | |
return top_layers | |
def freeze_layers(self, top_layers): | |
for name, param in self.model.named_parameters(): | |
if name not in top_layers: | |
param.requires_grad = False | |
def train(self, num_epochs, learning_rate): | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), lr=learning_rate) | |
for epoch in range(num_epochs): | |
self.model.train() | |
running_loss = 0.0 | |
for i, (inputs, labels) in enumerate(self.train_loader): | |
inputs, labels = inputs.to(self.device), labels.to(self.device) | |
optimizer.zero_grad() | |
outputs = self.model(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
print(f'Epoch {epoch + 1}, Loss: {running_loss / len(self.train_loader)}') | |
def validate(self): | |
self.model.eval() | |
correct = 0 | |
total = 0 | |
with torch.no_grad(): | |
for inputs, labels in self.val_loader: | |
inputs, labels = inputs.to(self.device), labels.to(self.device) | |
outputs = self.model(inputs) | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
print(f'Accuracy: {100 * correct / total}%') | |
# Usage example | |
# model = ... # Define your model | |
# train_loader = DataLoader(...) # Define your training data loader | |
# val_loader = DataLoader(...) # Define your validation data loader | |
spectrum = Spectrum(model, train_loader, val_loader) | |
top_layers = spectrum.select_layers() | |
spectrum.freeze_layers(top_layers) | |
spectrum.train(num_epochs=10, learning_rate=1e-5) | |
spectrum.validate() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment