Skip to content

Instantly share code, notes, and snippets.

@uchidama
Created January 28, 2018 16:18
Show Gist options
  • Save uchidama/a6dce4502c553da8eb6f4fbd8c3d3aed to your computer and use it in GitHub Desktop.
Save uchidama/a6dce4502c553da8eb6f4fbd8c3d3aed to your computer and use it in GitHub Desktop.
This code train fashion-mnist in Keras. Base code is https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
from __future__ import print_function
import keras
#from keras.datasets import mnist
from keras.datasets import fashion_mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.callbacks import CSVLogger
import sys
def printArgError():
print("set epochs.")
print("'python fashion-mnist_cnn_train.py 12'")
if len(sys.argv) < 2:
printArgError()
quit()
if sys.argv[1].isdigit() == False:
printArgError()
quit()
epochs = int(sys.argv[1])
print("epochs:"+str(epochs))
batch_size = 128
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
csv_logger = CSVLogger('train_log/trainlog_epochs' + str(epochs) + '.csv', append=True, separator=',')
model.fit(x_train, y_train, callbacks=[csv_logger],
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# save model
model.save("model_fashion-mnist_cnn_epochs" + str(epochs) + ".h5")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment