Last active
September 15, 2021 07:36
-
-
Save ugo-nama-kun/6fa2abe77d9f704829458ef3eb03e60b to your computer and use it in GitHub Desktop.
ものすごいシンプルな 4-th order Runge-Kutta
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
gamma = 0.05 | |
def f(x): | |
# x = [y, v]^T | |
a = np.array( | |
[ | |
[0, 1], | |
[-1, -2*gamma] | |
] | |
) | |
return np.matmul(a, x) | |
t_max = 100 | |
steps = 2000 | |
x_hist = [] | |
x2_hist = [] | |
sim = NumSim(func=f, dt=t_max/steps) | |
sim_e = NumSim(func=f, dt=t_max/steps, method="Euler") | |
t_hist = [] | |
x = np.array([1, -0.15]) | |
x2 = np.array([1, -0.15]) | |
for t in range(steps): | |
t_hist.append(t * sim._dt) | |
x_hist.append(x[0]) | |
x2_hist.append(x2[0]) | |
x = sim.step(x) | |
x2 = sim_e.step(x2) | |
t = np.linspace(0, t_max, 5000) | |
x_analytical = np.exp(-gamma*t) * np.cos(t * np.sqrt(1 - 0.15**2)) | |
plt.figure(figsize=(10, 10)) | |
plt.plot(t, x_analytical, alpha=1) | |
plt.plot(t_hist, x_hist, alpha=0.5) | |
plt.plot(t_hist, x2_hist, alpha=0.5) | |
plt.legend(["analytical", "RK4", "Euler"]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from collections.abc import Callable | |
class NumSim: | |
def __init__(self, func: Callable, dt=0.01, method="RK4"): | |
self._callable = func | |
self._dt = dt | |
self._method = method # RK4 or Euler | |
def step(self, x_now: np.ndarray): | |
if self._method == "RK4": | |
k1 = self._callable(x_now) | |
k2 = self._callable(x_now + self._dt * k1/2.) | |
k3 = self._callable(x_now + self._dt * k2/2.) | |
k4 = self._callable(x_now + self._dt * k3) | |
out = x_now + self._dt * (k1 + 2*k2 + 2*k3 + k4)/6. | |
elif self._method == "Euler": | |
out = x_now + self._dt * self._callable(x_now) | |
else: | |
raise ValueError("Invalid Numerical Method Name: RK4 or Euler") | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The result of example.py above.