Last active
August 20, 2021 00:20
-
-
Save umbra-scientia/f3615a7e8cbdb17ab945c914a03b0ff1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
# Linear Segment Additive Memory | |
class LSAM(nn.Module): | |
def __init__(self, in_dim, out_dim=None, hidden_dim=None, segment_sizes=[1,2,4,8], activation=nn.functional.gelu, device='cpu'): | |
super().__init__() | |
if not out_dim: out_dim = in_dim | |
if not hidden_dim: hidden_dim = in_dim + out_dim | |
cursor = 1 | |
nodes = [cursor] | |
segments = len(segment_sizes) | |
for i in segment_sizes: | |
cursor += i | |
nodes.append(cursor) | |
self.nodes = nodes | |
self.device = device | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.slice_dim = hidden_dim // segments | |
self.hidden_dim = self.slice_dim * segments | |
self.codebook = nn.Linear(self.in_dim, self.hidden_dim, bias=True, device=device) | |
self.projection = nn.Linear(self.hidden_dim, self.out_dim * 2, bias=False, device=device) | |
self.activation = activation | |
def forward(self, x): | |
xlen = x.shape[1] | |
codes = self.codebook(x) | |
if self.activation: | |
codes = self.activation(codes) | |
codes = torch.cumsum(codes, dim=1) | |
offset = self.nodes[-1] | |
padding = torch.zeros((x.shape[0], offset, self.slice_dim), dtype=torch.float32, device=self.device) | |
stack = [] | |
for i in range(len(self.nodes)-1): | |
code = codes[:,:,self.slice_dim*i:self.slice_dim*(i+1)] | |
rpos = self.nodes[i] | |
lpos = self.nodes[i + 1] | |
pc = torch.cat([padding, code], axis=1) | |
rval = pc[:,offset-rpos:xlen+offset-rpos,:] | |
lval = pc[:,offset-lpos:xlen+offset-lpos,:] | |
sample = (rval - lval) / (lpos - rpos) | |
stack.append(sample) | |
stack = torch.cat(stack, axis=2) | |
proj = self.projection(stack) | |
gate = torch.sigmoid(proj[:,:,self.out_dim:]) | |
proj = proj[:,:,:self.out_dim] | |
return x + gate * (proj - x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment