Last active
April 7, 2024 14:08
-
-
Save under0tech/2d1d151aaf9652fe81b9b68be7405ce7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Execute model for the whole history range | |
copy_df = init_df.copy() | |
y_predicted = model.predict(x_train) | |
y_predicted_transformed = np.squeeze(scaler.inverse_transform(y_predicted)) | |
first_seq = scaler.inverse_transform(np.expand_dims(y_train[:6], axis=1)) | |
last_seq = scaler.inverse_transform(np.expand_dims(y_train[-3:], axis=1)) | |
y_predicted_transformed = np.append(first_seq, y_predicted_transformed) | |
y_predicted_transformed = np.append(y_predicted_transformed, last_seq) | |
copy_df[f'predicted_close'] = y_predicted_transformed | |
# Add predicted results to the table | |
date_now = dt.date.today() | |
date_tomorrow = dt.date.today() + dt.timedelta(days=1) | |
date_after_tomorrow = dt.date.today() + dt.timedelta(days=2) | |
copy_df.loc[date_now] = [predictions[0], f'{date_now}', 0, 0] | |
copy_df.loc[date_tomorrow] = [predictions[1], f'{date_tomorrow}', 0, 0] | |
copy_df.loc[date_after_tomorrow] = [predictions[2], f'{date_after_tomorrow}', 0, 0] | |
# Result chart | |
plt.style.use(style='ggplot') | |
plt.figure(figsize=(16,10)) | |
plt.plot(copy_df['close'][-150:].head(147)) | |
plt.plot(copy_df['predicted_close'][-150:].head(147), linewidth=1, linestyle='dashed') | |
plt.plot(copy_df['close'][-150:].tail(4)) | |
plt.xlabel('days') | |
plt.ylabel('price') | |
plt.legend([f'Actual price for {STOCK}', | |
f'Predicted price for {STOCK}', | |
f'Predicted price for future 3 days']) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment