Created
February 16, 2014 08:59
-
-
Save understar/9031405 to your computer and use it in GitHub Desktop.
Kernel PCA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
========== | |
Kernel PCA | |
========== | |
This example shows that Kernel PCA is able to find a projection of the data | |
that makes data linearly separable. | |
""" | |
print(__doc__) | |
# Authors: Mathieu Blondel | |
# Andreas Mueller | |
# License: BSD 3 clause | |
import numpy as np | |
import pylab as pl | |
from sklearn.decomposition import PCA, KernelPCA | |
from sklearn.datasets import make_circles | |
np.random.seed(0) | |
X, y = make_circles(n_samples=400, factor=.3, noise=.05) | |
kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) | |
X_kpca = kpca.fit_transform(X) | |
X_back = kpca.inverse_transform(X_kpca) | |
pca = PCA() | |
X_pca = pca.fit_transform(X) | |
# Plot results | |
pl.figure() | |
pl.subplot(2, 2, 1, aspect='equal') | |
pl.title("Original space") | |
reds = y == 0 | |
blues = y == 1 | |
pl.plot(X[reds, 0], X[reds, 1], "ro") | |
pl.plot(X[blues, 0], X[blues, 1], "bo") | |
pl.xlabel("$x_1$") | |
pl.ylabel("$x_2$") | |
X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) | |
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T | |
# projection on the first principal component (in the phi space) | |
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) | |
pl.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') | |
pl.subplot(2, 2, 2, aspect='equal') | |
pl.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") | |
pl.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") | |
pl.title("Projection by PCA") | |
pl.xlabel("1st principal component") | |
pl.ylabel("2nd component") | |
pl.subplot(2, 2, 3, aspect='equal') | |
pl.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") | |
pl.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") | |
pl.title("Projection by KPCA") | |
pl.xlabel("1st principal component in space induced by $\phi$") | |
pl.ylabel("2nd component") | |
pl.subplot(2, 2, 4, aspect='equal') | |
pl.plot(X_back[reds, 0], X_back[reds, 1], "ro") | |
pl.plot(X_back[blues, 0], X_back[blues, 1], "bo") | |
pl.title("Original space after inverse transform") | |
pl.xlabel("$x_1$") | |
pl.ylabel("$x_2$") | |
pl.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment