Skip to content

Instantly share code, notes, and snippets.

@universvm
Last active November 17, 2020 11:29
Show Gist options
  • Save universvm/662928dbfd169bdc8143e2b6102e53ee to your computer and use it in GitHub Desktop.
Save universvm/662928dbfd169bdc8143e2b6102e53ee to your computer and use it in GitHub Desktop.
[Test if Tensorflow is running on GPU] #Python #Tensorflow
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment