Skip to content

Instantly share code, notes, and snippets.

@unprovable
Last active October 26, 2020 10:54
Show Gist options
  • Save unprovable/437561c660f7d85f283e510a16ef5834 to your computer and use it in GitHub Desktop.
Save unprovable/437561c660f7d85f283e510a16ef5834 to your computer and use it in GitHub Desktop.
__author__ = "Mark Carney aka @LargeCardinal"
__copyright__ = "The Author"
__license__ = "MIT"
__status__ = "Proof of Concept - NOT FOR PRODUCTION"
import qiskit
from qiskit import IBMQ
import math
import sympy
import secrets
import threading
import hashlib
IBMQ_API_TOKEN = ''
class QuantumRNG(object):
def __init__(self, ibmqx_token=''):
self.sys_rng = secrets.SystemRandom()
self.qc_entropy_pool = "{0:b}".format(self.sys_rng.randrange(3*10**100,4*10**100))
self.seed = secrets.randbelow(5*10**100)
# prepare the first seeds and fix the random primes
# for the CSPRNG
x = self.sys_rng.randrange(3*10**100, 4*10**100)
y = self.sys_rng.randrange(3*10**100, 4*10**100)
self.p = self.next_usable_prime(x)
self.q = self.next_usable_prime(y)
self.reseed_count = 0
self.reseed_threshold = 10**7 #reseed every 10 million bits - reduce this to test the IBMQ integration. -MC
# do qiskit-y stuff
self.provider = self.set_ibmq_provider(ibmqx_token)
self.rng_circuit = self.make_circuit(15)
self.ibmq_backend = self.provider.get_backend('ibmq_16_melbourne')
# small CSPRNG from here: https://www.johndcook.com/blog/2017/09/21/a-cryptographically-secure-random-number-generator/
# tweaked to match the original paper (not using mod 2, but the proper parity of the output from x*x mod M)
# the Blum-Blum-Shub algorithm has some critical analysis here - https://arxiv.org/pdf/1811.06418.pdf
# original is here: https://pdfs.semanticscholar.org/c19b/91cdc1da67c52e606cd4752472ce0db83131.pdf
def next_usable_prime(self, x):
# Find the next prime congruent to 3 mod 4 following x.
p = sympy.nextprime(x)
while (p % 4 != 3):
p = sympy.nextprime(p)
# Check the seed mod p isn't 0...
if self.seed % p == 0:
p = self.next_usable_prime(p+1)
return p
def get_rand_bitstring(self, N=64):
M = self.p*self.q
#print("count is {0}".format(self.reseed_count))
if self.reseed_count > self.reseed_threshold:
self.do_update_entropy()
x = self.seed
bit_string = ""
for _ in range(N):
x = x*x % M
# Turns out we probably don't need the fancy parity,
# just odd/even parity will do. -MC
b = x % 2
bit_string += str(b)
# update the seed
self.seed = x
# update bit count
self.reseed_count += N
if self.reseed_count % 8196 == 0:
print("[i] Random bits at count {0} are: {1}".format(self.reseed_count, bit_string))
return bit_string
# Convert the bitstring to bytes - useful for various applications. -MC
def get_rand_bytes(self, N=64):
bitstring = self.get_rand_bitstring(N=N)
v = int(bitstring, 2)
b = bytearray()
while v:
b.append(v & 0xff)
v >>= 8
return bytes(b[::-1])
def update_seed(self, new_seed):
self.seed = new_seed
return
def do_update_entropy(self):
#print("doing entropy update...")
# use system entropy in times of need
if len(self.qc_entropy_pool) < 512:
# Just copying bits from the local entropy pool for now... Not very elegant :-/ -MC
local_bits = "{0:b}".format(self.sys_rng.randrange(2*10**100, 3*10**100))
self.qc_entropy_pool += local_bits
print("[!] Added {0} bits from local entropy pool...".format(len(local_bits)))
if len(self.qc_entropy_pool) < 1025: # we don't want to call too much...
# use background thread to get quantum bits... Get 1024 bits in 15-bit chunks across so many shots on the QC. -MC
# the queues might be long, so we just have to wait...
get_qc_thread = threading.Thread(target=self.get_quantum_bits, name="IBM-QX Computation", args=(1024,))
get_qc_thread.start()
# consume 64-bits of entropy...
self.seed += int(self.qc_entropy_pool[:256],2)
# remove the bits we used...
self.qc_entropy_pool = self.qc_entropy_pool[256:]
print("[!] Remaining bits in entropy pool: {0}".format(len(self.qc_entropy_pool)))
# reset the count
self.reseed_count = 0
return
# IBM-QX stuff inspired by: https://github.com/ozanerhansha/qRNG/
def set_ibmq_provider(self, ibmqx_token):
if ibmqx_token == '':
provider = qiskit.BasicAer
else:
IBMQ.save_account(ibmqx_token, overwrite=True)
IBMQ.load_account()
provider = IBMQ.get_provider('ibm-q')
return provider
def make_circuit(self, n=15):
# This quantum circuit takes n-many qubits, and then puts them into
# superposition with a Hadamard operation (transpiled to a Z-rotation, usually).
# We then measure each qubit and put the ouputs into a register of n-bits in length
# and then return that back. -MC
qr = qiskit.QuantumRegister(n)
cr = qiskit.ClassicalRegister(n)
circ = qiskit.QuantumCircuit(qr, cr)
circ.h(qr)
circ.measure(qr,cr)
return circ
def get_bits_from_counts(self, counts):
bits = ""
for i in [k for k, v in counts.items() if v == 1]:
bits += i
return bits
def run_ibmq_circuit(self, shots=35):
# our circuit will have 2^n bits of entropy of output, but the maxmimum number of shots allowed
# on the big IBMQ 16-qubit machine in Melbourne is 2^14... so in theory we can run this
# up to 2^14 times, and get 15 bits each time with little risk of things overlapping!
# (Why? Because pigeonhole principle, and random...)
# Thus in one job we can theoretically get up to 122,880 (15*8292) bits of good, pure,
# quantumly-derived entropy! :-D The only problem; it isn't secret to us...
if self.ibmq_backend.remaining_jobs_count() > 4:
# if enough jobs are left en queue...
job = qiskit.execute(self.rng_circuit, self.ibmq_backend, shots=shots)
bits = self.get_bits_from_counts(job.result().get_counts())
else:
print("[!] No free jobs - using system randomnes...")
#return some system-y randomness
bits = "{0:b}".format(self.sys_rng.randrange(2*10**100, 3*10**100))
return bits
def get_quantum_bits(self, n=512):
print("[*] running bg IBMQ process")
# default to get ceil(512/15) random bits from QC ...
numshots = math.ceil(n/self.rng_circuit.width()*2)
# go get the quantum! -MC
bits_from_qc = self.run_ibmq_circuit(shots=numshots)
# hash everything to make the most of the quantum :P
current_e_pool = self.qc_entropy_pool
# clear the pool.. or not -MC
#self.qc_entropy_pool = ""
m = hashlib.sha3_512()
# Mixing it up twice by hashing the new bits and the old pool both ways...
# This is basically using Keccak as an 'entropy expander' twice.
# Reason for this is that our quantumly random bits aren't secret to only us,
# and the entropy may be mismatched with our local os.urandom output,
# so this should normalise it. :-) -MC
for i in range(math.floor(len(bits_from_qc)/512)):
m.update(str(current_e_pool + bits_from_qc[i*512:(i+1)*512]).encode('utf-8'))
self.qc_entropy_pool += ''.join(format(byte, '08b') for byte in m.digest())
m.update(str(bits_from_qc + current_e_pool).encode('utf-8'))
self.qc_entropy_pool += ''.join(format(byte, '08b') for byte in m.digest())
print("[i] Updated the entropy pool with {0} bits from IBMQ, {1} bits after hashing...".format(len(bits_from_qc),(math.floor(len(bits_from_qc)/512)+1)*512))
return
def main():
q_rng = QuantumRNG(ibmqx_token=IBMQ_API_TOKEN)
for i in range(2*10**7): # get some req's for 64-bits from CSPRNG for test...
q_rng.get_rand_bitstring()
if __name__ == "__main__":
main()
@unprovable
Copy link
Author

EDIT - removed the Hamming weight parity function in order to make it faster, but maintain the security we need. I misread the paper's def/n of 'parity'. As such, just doing (mod 2) should be fine (to get odd/even parity). -MC

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment