Created
December 24, 2021 09:30
-
-
Save untodesu/578ef01d6455ab3c439d7383d591c81e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<p style="code { white-space: pre; }"> | |
<code white-space="pre"> | |
SELECT COUNT(*) FROM pulsar_stars <br> | |
WHERE (TARGET = 0 AND MIP BETWEEN 83 AND 84) OR <br> | |
(TARGET = 1 AND MIP BETWEEN 83 AND 89)<br> | |
^^^^^ R=79<br> | |
SELECT AVG(MIP) FROM pulsar_stars <br> | |
WHERE (TARGET = 0 AND MIP BETWEEN 83 AND 84) OR <br> | |
(TARGET = 1 AND MIP BETWEEN 83 AND 89)<br> | |
^^^^^ R=84.5427964154411764705882352941176470588<br> | |
SELECT * FROM pulsar_stars <br> | |
WHERE (TARGET = 0 AND MIP BETWEEN 83 AND 84) OR <br> | |
(TARGET = 1 AND MIP BETWEEN 83 AND 89)<br><br> | |
import numpy as np<br> | |
import pandas as pd<br> | |
from pandas import Series, DataFrame<br> | |
from sklearn.preprocessing import MinMaxScaler<br> | |
data = pd.read_csv('report.csv', usecols=['MIP','STDIP','EKIP','SIP','MC','STDC','EKC','SC'])<br> | |
data = MinMaxScaler().fit_transform(data)<br> | |
avr = data.mean(axis = 0)<br> | |
print("T2:", avr[0])<br> | |
from sklearn.linear_model import LogisticRegression<br> | |
y = pd.read_csv('report.csv', usecols = ['TARGET'])<br> | |
reg = LogisticRegression(random_state = 2019, solver='lbfgs').fit(data, y.values.ravel())<br> | |
print("T3: ([[not, is]]):", reg.predict_proba([[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]))<br><br> | |
from sklearn.neighbors import KNeighborsClassifier<br> | |
D_MANH=1<br> | |
D_EUCL=2<br> | |
D_NEIG=136<br> | |
neigh = KNeighborsClassifier(n_neighbors = D_NEIG, p = D_MANH)<br> | |
neigh.fit(data, y.values.ravel())<br> | |
Star = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]<br> | |
print("T4:", neigh.kneighbors([Star])[0][0][0])<br><br><br> | |
import pandas as pd<br> | |
import numpy as np<br> | |
import matplotlib.pyplot as plt<br> | |
import mnist<br> | |
from sklearn.model_selection import train_test_split<br> | |
from sklearn.metrics import confusion_matrix<br> | |
from sklearn.decomposition import PCA<br> | |
from sklearn.multiclass import OneVsRestClassifier<br> | |
from sklearn.ensemble import RandomForestClassifier<br> | |
%matplotlib inline<br> | |
D_WIDTH=28<br> | |
D_MINDISP=0.83<br> | |
X_train = mnist.train_images()<br> | |
y_train = mnist.train_labels()<br> | |
dim = D_WIDTH*D_WIDTH<br> | |
X_train = X_train.reshape(len(X_train), dim)<br> | |
ev_ = D_MINDISP<br> | |
M = 0<br> | |
pca = PCA(n_components=70, svd_solver='full')<br> | |
pca.fit(X_train)<br> | |
explained_variance = np.round(np.cumsum(pca.explained_variance_ratio_),3)<br> | |
for i, ev in enumerate(explained_variance):<br> | |
if ev > ev_:<br> | |
M = i + 1<br> | |
break<br> | |
plt.plot(np.arange(70), explained_variance)<br> | |
plt.plot([0, 70], [0.84, 0.84]);<br> | |
print("T1: M =", M)<br><br> | |
D_TS=0.3<br> | |
D_RS=126<br> | |
pca = PCA(n_components = M, svd_solver = 'full')<br> | |
pca.fit(X_train)<br> | |
X_test_transformed = pca.transform(X_train)<br> | |
X_train, X_test, y_train, y_test = train_test_split(X_test_transformed, y_train, test_size = D_TS, random_state = D_RS)<br> | |
print("T2:", sum([i[0] for i in X_train]) / len(X_train))<br><br> | |
D_CRIT='gini'<br> | |
D_MSLF=10<br> | |
D_MXDP=20<br> | |
D_ESTS=10<br> | |
D_RSTT=126<br> | |
D_XYOF=5<br> | |
rfc = RandomForestClassifier(criterion=D_CRIT, min_samples_leaf=D_MSLF, max_depth=D_MXDP, n_estimators=D_ESTS, random_state=D_RSTT)<br> | |
clf = OneVsRestClassifier(rfc).fit(X_train, y_train)<br> | |
y_pred = clf.predict(X_test)<br> | |
CM = confusion_matrix(y_test, y_pred)<br> | |
print("T3:", CM[D_XYOF][D_XYOF])<br><br> | |
D_TARGETVAL=4<br> | |
D_TARGETFILE=20<br> | |
data = pd.read_csv('pred_for_task.csv', index_col='FileName')<br> | |
X_test = data.drop('Label', axis=1)<br> | |
X_test = pca.transform(X_test)<br> | |
y_test = data['Label']<br> | |
y_pred = clf.predict(X_test)<br> | |
print("T4:", clf.predict_proba([X_test[D_TARGETFILE-1]])[0][D_TARGETVAL])<br> | |
</code> | |
</p> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment