Last active
August 31, 2022 15:54
-
-
Save urigoren/4c1b6c6882c861d51678e584915153b6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
from itertools import product | |
from scipy import sparse | |
from sklearn.base import TransformerMixin | |
class InteractionBySplit(TransformerMixin): | |
""" | |
Takes a sparse matrix as input, and an index to split by, and returns all possible interactions before and after that index. | |
""" | |
def __init__(self, split_index,*args,**kwargs): | |
super().__init__(*args,**kwargs) | |
self.split_index=split_index | |
def transform(self,X): | |
X=X.tocoo() | |
M=sparse.dok_matrix((X.shape[0],self.split_index*(X.shape[1]-self.split_index))) | |
pre,post=defaultdict(list),defaultdict(list) | |
rows=set() | |
for row,col,v in zip(X.row,X.col,X.data): | |
rows.add(row) | |
if col<self.split_index: | |
pre[row].append((col,v)) | |
else: | |
post[row].append((col-self.split_index,v)) | |
for row in rows: | |
for a,b in product(pre[row],post[row]): | |
M[row,a[0]+b[0]*self.split_index]=a[1]*b[1] | |
return M.tocsr() | |
if __name__=="__main__": | |
X = sparse.coo_matrix([[1,0,0,1,0,0],[1,0,0,0,1,0],[0,1,0,1,0,0]]) | |
Y = InteractionBySplit(3).transform(X).todense() | |
print(Y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment