Last active
March 16, 2021 20:13
-
-
Save urigoren/f073f1c9e19323ada795d2963aa698a2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy import sparse | |
import collections | |
""" | |
#SPARK Co-Occurence Matrix | |
#Format: (vertex, vertex) : count | |
import json, operator, itertools | |
def cooccur_matrix(srcHdfs, product2vertex): | |
ret = sc.textFile(srcHdfs)\ | |
.map(json.loads) \ | |
.map(lambda j: (j['userId'], product2vertex.value.get(j['productId'], -1))) \ | |
.filter(lambda t: t[1] > 0)\ | |
.map(lambda t: (t[0], set([t[1]])))\ | |
.reduceByKey(operator.ior)\ | |
.flatMap(lambda t: list(itertools.product(t[1],t[1])))\ | |
.countByValue() | |
return ret | |
""" | |
def dict2graph(cooccur_matrix, threshold=2): | |
'''Returns a sparse matrix representation of the adjacency matrix''' | |
filtered = [(k[0],k[1]) for k,v in cooccur_matrix.items() if v>=threshold] | |
vertices=sorted(list(set([k for k,v in filtered]))) | |
filtered = [(vertices.index(k),vertices.index(v)) for k,v in filtered] | |
row,col = zip(*filtered) | |
print ('We are left with {e} edges on {v} vertices'.format(e=len(col),v=len(vertices))) | |
return vertices, sparse.coo_matrix((np.ones(len(col)),(row,col))) | |
def collect_components(components,vertices): | |
ret = collections.defaultdict(list) | |
for i, c in enumerate(components): | |
ret[c].append(vertices[i]) | |
return sorted(ret.values(),key=lambda x: len(x), reverse=True) | |
def connected_components(cooccur_matrix, edge_threshold, component_threshold=2): | |
''' | |
co-occurence matrix format dict((label_source,label_dest))-->count | |
edge_threshold = minumum count to consider as an edge | |
component_threshold = minumum number of vertices in a connected component | |
returns a list of components, sorted by size | |
''' | |
vertices, edges = dict2graph(cooccur_matrix, edge_threshold) | |
n, components = sparse.csgraph.connected_components(edges, directed=False) | |
print ('Found {n} components'.format(n=n)) | |
components = collect_components(components,vertices) | |
components = [c for c in components if len(c)>=component_threshold] | |
print ('removed {k} small components'.format(k=n-len(components))) | |
print ('component sizes: '+ repr([len(c) for c in components])) | |
return components | |
if __name__ == '__main__': | |
import pickle | |
with open('cooccur_matrix.pickle','r') as f: | |
components = connected_components(pickle.load(f), edge_threshold=30, component_threshold=2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment