Last active
August 29, 2015 14:13
-
-
Save urschrei/5794224526a470a8f0b0 to your computer and use it in GitHub Desktop.
Loop through a grouped, time-series-indexed Pandas DataFrame, plotting category counts per year
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# this data won't work (it's only for one year), it's only illustrative | |
df = pd.DataFrame({ | |
'Age': {0: 32, 1: 38, 2: 45, 3: 39, 4: 44}, | |
'County': {0: 'Bexar', 1: 'Tarrant', 2: 'Harris', 3: 'Nueces', 4: 'Kerr'}, | |
'Date Executed': { | |
0: '10/28/2014', | |
1: '09/17/2014', | |
2: '09/10/14', | |
3: '04/16/2014', | |
4: '04/09/14'}, | |
'Executed': {0: 518, 1: 517, 2: 516, 3: 515, 4: 514}, | |
'First Name': {0: 'Miguel', 1: 'Lisa', 2: 'Willie', 3: 'Jose', 4: 'Ramiro'}, | |
'Last Name': { | |
0: 'Paredes', | |
1: 'Coleman', | |
2: 'Trottie', | |
3: 'Villegas', | |
4: 'Hernandez'}, | |
'Race': {0: 'Hispanic', 1: 'Black', 2: 'Black', 3: 'Hispanic', 4: 'Hispanic'}, | |
'TDCJ Number': {0: 999400, 1: 999511, 2: 999085, 3: 999417, 4: 999342}}) | |
# convert to DateTime | |
df['Date Executed'] = pd.to_datetime(df['Date Executed'], dayfirst=True, infer_datetime_format = True) | |
# set as index | |
df.set_index('Date Executed', inplace=True) | |
# set Race as categorical | |
df['Race'] = df['Race'].astype('category') | |
grouped = df.groupby('Race') | |
plt.clf() | |
fig = plt.figure(figsize=(10, 8)) | |
ax = fig.add_subplot(111, axisbg='w', frame_on=True) | |
for key, group in grouped: | |
data = group.groupby(lambda x: x.year).count() | |
data['Race'].plot(label=key, ax=ax, lw=2.) | |
# label x and y axis | |
plt.xlabel("Year") | |
plt.ylabel("Number of Executions") | |
# turn off background grid | |
ax.grid(b=None) | |
# show a semi-transparent legend | |
leg = ax.legend(loc='best') | |
leg.get_frame().set_alpha(0.75) | |
# set a title | |
plt.title( | |
"Executions per Race, %s - %s" % (min(df.index.year), max(df.index.year)), | |
fontweight='bold') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment