Last active
November 6, 2020 02:49
-
-
Save urschrei/6436526 to your computer and use it in GitHub Desktop.
How to plot Shapely Points using Matplotlib, Basemap, and Descartes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
required packages: | |
numpy | |
matplotlib | |
basemap: http://matplotlib.org/basemap/users/installing.html | |
shapely: https://pypi.python.org/pypi/Shapely | |
descartes: https://pypi.python.org/pypi/descartes | |
random | |
numpy and random are only required to generate random points for this example | |
""" | |
from random import shuffle, randint | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.collections import PatchCollection | |
from mpl_toolkits.basemap import Basemap | |
from shapely.geometry import Point, MultiPoint, MultiPolygon | |
from descartes import PolygonPatch | |
# lower left minx miny , upper right maxx maxy | |
bounds = [-6.108398, 49.61071, 1.669922, 58.972667] | |
minx, miny, maxx, maxy = bounds | |
w, h = maxx - minx, maxy - miny | |
# generate random points within the bounds | |
lon = np.linspace(minx, maxx).tolist() | |
lat = np.linspace(miny, maxy).tolist() | |
random.shuffle(lon) | |
random.shuffle(lat) | |
# create a new matplotlib figure and axes instance | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
# add a basemap and a small additional extent | |
m = Basemap( | |
projection='merc', | |
ellps = 'WGS84', | |
llcrnrlon=minx - 0.2 * w, | |
llcrnrlat=miny - 0.2 * h, | |
urcrnrlon=maxx + 0.2 * w, | |
urcrnrlat=maxy + 0.2 * h, | |
lat_ts=0, | |
resolution='h') | |
m.drawcoastlines(linewidth=0.3) | |
m.drawmapboundary() | |
# a shapefile can be added like so if needed | |
# m.readshapefile('london_shp', 'london', color='#555555') | |
# set axes limits to basemap's coordinate reference system | |
min_x, min_y = m(minx, miny) | |
max_x, max_y = m(maxx, maxy) | |
corr_w, corr_h = max_x - min_x, max_y - min_y | |
ax.set_xlim(min_x - 0.2 * corr_w, max_x + 0.2 * corr_w) | |
ax.set_ylim(min_y - 0.2 * corr_h, max_y + 0.2 * corr_h) | |
# square up axes and basemap | |
ax.set_aspect(1) | |
# buffer units are translated to metres by Basemap | |
# we're randomly varying between 7.5k and 15k metres | |
patches = [PolygonPatch(Point(m(lon, lat)).buffer(1.0 * randint(7500, 15000)), | |
fc='#cc00cc', ec='#555555', alpha=0.5, zorder=4) | |
for lon, lat in zip(lon, lat)] | |
ax.add_collection(PatchCollection(patches, match_original=True)) | |
plt.savefig('data/uk.png', dpi=300) | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# We can extract the London Borough boundaries by filtering on the AREA_CODE key | |
# Get maps from EDINA http://digimap.edina.ac.uk/digimap/home | |
mp = MultiPolygon( | |
[shape(pol['geometry']) for pol in fiona.open('data/boroughs/boroughs.shp') | |
if pol['properties']['AREA_CODE'] == 'LBO']) | |
# We can now do GIS-ish operations on each borough polygon! | |
# we could randomize this by dumping the polygons into a list and shuffling it | |
# or we could define a random colour using fc=np.random.rand(3,) | |
# available colour maps are here: http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps | |
cm = plt.get_cmap('RdBu') | |
num_colours = len(mp) | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
minx, miny, maxx, maxy = mp.bounds | |
w, h = maxx - minx, maxy - miny | |
ax.set_xlim(minx - 0.2 * w, maxx + 0.2 * w) | |
ax.set_ylim(miny - 0.2 * h, maxy + 0.2 * h) | |
ax.set_aspect(1) | |
patches = [] | |
for idx, p in enumerate(mp): | |
colour = cm(1. * idx / num_colours) | |
patches.append(PolygonPatch(p, fc=colour, ec='#555555', lw=0.2, alpha=1., zorder=1)) | |
ax.add_collection(PatchCollection(patches, match_original=True)) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
plt.title("Shapefile polygons rendered using Shapely") | |
plt.tight_layout() | |
plt.savefig('data/london_from_shp.png', alpha=True, dpi=300) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, I tried to plot my shape and my points using your code, but I can't add the points on the fiona python object (I must be use this because I need to use a selection inside the original shapefile for different combinations of municipalities in my Thesis).
thank you!
My data is here, is a pickle object:
agents
https://drive.google.com/open?id=0Bxs2IRsacPU4VjVvUE9va0FSbVU
shapefile
https://drive.google.com/open?id=0Bxs2IRsacPU4Q0JvYzZndHRodDA
my code is constructed over your's:
-- coding: utf-8 --
author = 'B2046470858'
source https://gist.github.com/urschrei/6436526
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from mpl_toolkits.basemap import Basemap
from shapely.geometry import Point, MultiPoint, MultiPolygon, shape
from descartes import PolygonPatch
import fiona
import pickle
import pandas as pd
load the agents data
with open('my_agents_data.agents', 'rb') as stored_agents_file:
my_agents, my_houses, my_families, my_firms, my_regions = pickle.load(stored_agents_file)
create a data firms location
lat = pd.DataFrame(columns=["lat"])
lon = pd.DataFrame(columns=["lon"])
for firm in my_firms:
lat = pd.concat([lat, pd.DataFrame([firm.address.GetY()],columns=["lat"])],axis=0)
lon = pd.concat([lon, pd.DataFrame([firm.address.GetX()],columns=["lon"])],axis=0)
coords_firms = pd.concat([lat, lon], axis=1)
lower left minx miny , upper right maxx maxy
mp = MultiPolygon([shape(pol['geometry']) for pol in fiona.open('URBAN_IBGE_ACPs.shp') if pol['properties']['ACP'] == 'Brasília'])
cm = plt.get_cmap('RdBu')
num_colours = len(mp)
fig = plt.figure()
ax = fig.add_subplot(111)
minx, miny, maxx, maxy = mp.bounds
w, h = maxx - minx, maxy - miny
ax.set_xlim(minx - 0.02 * w, maxx + 0.02 * w)
ax.set_ylim(miny - 0.02 * h, maxy + 0.02 * h)
ax.set_aspect(1)
add the points
patches = [PolygonPatch(Point(mp(coords_firms.iloc[index,:].values)), fc='#cc00cc', ec='#555555', alpha=0.5, zorder=4)
for index in range(coords_firms.shape[0])]
ax.add_collection(PatchCollection(patches, match_original=True))
ax.set_xticks()
ax.set_yticks()
plt.title("Shapefile polygons rendered using Shapely")
plt.tight_layout()
plt.savefig('london_from_shp.png', alpha=True, dpi=300)
plt.show()