Created
September 9, 2023 19:44
-
-
Save ursuleacv/6a9db76795ecaf205e5c10880566660a to your computer and use it in GitHub Desktop.
polyfit equivalent in PHP
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
function polyfit($dependentValues, $independentValues, $countOfElements, $order, &$coefficients) | |
{ | |
// Declarations... | |
// ---------------------------------- | |
$maxOrder = 5; | |
$B = array_fill(0, $maxOrder + 1, 0.0); | |
$P = array_fill(0, (2 * ($maxOrder + 1)) + 1, 0.0); | |
$A = array_fill(0, (2 * ($maxOrder + 1)) * ($maxOrder + 1), 0.0); | |
$x = 0.0; | |
$y = 0.0; | |
$powx = 0.0; | |
// Verify initial conditions.... | |
// ---------------------------------- | |
// This method requires that the countOfElements > | |
// (order+1) | |
if ($countOfElements <= $order) | |
return -1; | |
// This method has imposed an arbitrary bound of | |
// order <= maxOrder. Increase maxOrder if necessary. | |
if ($order > $maxOrder) | |
return -1; | |
// Begin Code... | |
// ---------------------------------- | |
// Identify the column vector | |
for ($ii = 0; $ii < $countOfElements; $ii++) | |
{ | |
$x = $dependentValues[$ii]; | |
$y = $independentValues[$ii]; | |
$powx = 1; | |
for ($jj = 0; $jj < ($order + 1); $jj++) | |
{ | |
$B[$jj] = $B[$jj] + ($y * $powx); | |
$powx = $powx * $x; | |
} | |
} | |
// Initialize the PowX array | |
$P[0] = $countOfElements; | |
// Compute the sum of the Powers of X | |
for ($ii = 0; $ii < $countOfElements; $ii++) | |
{ | |
$x = $dependentValues[$ii]; | |
$powx = $dependentValues[$ii]; | |
for ($jj = 1; $jj < ((2 * ($order + 1)) + 1); $jj++) | |
{ | |
$P[$jj] = $P[$jj] + $powx; | |
$powx = $powx * $x; | |
} | |
} | |
// Initialize the reduction matrix | |
for ($ii = 0; $ii < ($order + 1); $ii++) | |
{ | |
for ($jj = 0; $jj < ($order + 1); $jj++) | |
{ | |
$A[($ii * (2 * ($order + 1))) + $jj] = $P[$ii + $jj]; | |
} | |
$A[($ii * (2 * ($order + 1))) + ($ii + ($order + 1))] = 1; | |
} | |
// Move the Identity matrix portion of the redux matrix | |
// to the left side (find the inverse of the left side | |
// of the redux matrix | |
for ($ii = 0; $ii < ($order + 1); $ii++) | |
{ | |
$x = $A[($ii * (2 * ($order + 1))) + $ii]; | |
if ($x != 0) | |
{ | |
for ($kk = 0; $kk < (2 * ($order + 1)); $kk++) | |
{ | |
$A[($ii * (2 * ($order + 1))) + $kk] = | |
$A[($ii * (2 * ($order + 1))) + $kk] / $x; | |
} | |
for ($jj = 0; $jj < ($order + 1); $jj++) | |
{ | |
if (($jj - $ii) != 0) | |
{ | |
$y = $A[($jj * (2 * ($order + 1))) + $ii]; | |
for ($kk = 0; $kk < (2 * ($order + 1)); $kk++) | |
{ | |
$A[($jj * (2 * ($order + 1))) + $kk] = | |
$A[($jj * (2 * ($order + 1))) + $kk] - | |
$y * $A[($ii * (2 * ($order + 1))) + $kk]; | |
} | |
} | |
} | |
} | |
else | |
{ | |
// Cannot work with singular matrices | |
return -1; | |
} | |
} | |
// Calculate and Identify the coefficients | |
for ($ii = 0; $ii < ($order + 1); $ii++) | |
{ | |
for ($jj = 0; $jj < ($order + 1); $jj++) | |
{ | |
$x = 0; | |
for ($kk = 0; $kk < ($order + 1); $kk++) | |
{ | |
$x = $x + ($A[($ii * (2 * ($order + 1))) + ($kk + ($order + 1))] * | |
$B[$kk]); | |
} | |
$coefficients[$ii] = $x; | |
} | |
} | |
return 0; | |
} | |
$coefficients=[]; | |
$x=[1,2,3,4,5]; | |
$y=[3,8,12,20,30]; | |
$r = polyfit($x,$y, 5,2, $coefficients); | |
print_r($coefficients); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment