Created
September 10, 2023 19:47
-
-
Save ursuleacv/f68c326a2488579d3a23164577cee1fc to your computer and use it in GitHub Desktop.
Calculate quadratic polynomial regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
function quadraticRegression($dataPoints) { | |
$sumX = 0; | |
$sumX2 = 0; | |
$sumX3 = 0; | |
$sumX4 = 0; | |
$sumY = 0; | |
$sumXY = 0; | |
$sumX2Y = 0; | |
$n = count($dataPoints); | |
foreach ($dataPoints as $dataPoint) { | |
$x = $dataPoint[0]; | |
$y = $dataPoint[1]; | |
$sumX += $x; | |
$sumX2 += pow($x, 2); | |
$sumX3 += pow($x, 3); | |
$sumX4 += pow($x, 4); | |
$sumY += $y; | |
$sumXY += $x * $y; | |
$sumX2Y += pow($x, 2) * $y; | |
} | |
$matrix = [ | |
[$sumX4, $sumX3, $sumX2], | |
[$sumX3, $sumX2, $sumX], | |
[$sumX2, $sumX, $n] | |
]; | |
$vector = [ | |
$sumX2Y, | |
$sumXY, | |
$sumY | |
]; | |
$coefficients = solveLinearSystem($matrix, $vector); | |
return $coefficients; | |
} | |
function solveLinearSystem($matrix, $vector) { | |
$n = count($matrix); | |
for ($i = 0; $i < $n; $i++) { | |
$pivot = $matrix[$i][$i]; | |
for ($j = $i; $j < $n; $j++) { | |
$matrix[$i][$j] /= $pivot; | |
} | |
$vector[$i] /= $pivot; | |
for ($k = 0; $k < $n; $k++) { | |
if ($k != $i) { | |
$factor = $matrix[$k][$i]; | |
for ($j = $i; $j < $n; $j++) { | |
$matrix[$k][$j] -= $factor * $matrix[$i][$j]; | |
} | |
$vector[$k] -= $factor * $vector[$i]; | |
} | |
} | |
} | |
return array_slice($vector, 0, $n); | |
} | |
$dataPoints = [ | |
[1, 3], | |
[2, 8], | |
[3, 12], | |
[4, 20], | |
[5, 30] | |
]; | |
$coefficients = quadraticRegression($dataPoints); | |
$a = $coefficients[0]; | |
$b = $coefficients[1]; | |
$c = $coefficients[2]; | |
echo "The quadratic polynomial is: y = $a * x^2 + $b * x + $c"; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment