Created
September 23, 2016 11:29
-
-
Save useronym/deb05054218f8b968d4777fd359a900d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| module test1 where | |
| open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong₂) public | |
| data List (A : Set) : Set where | |
| ∅ : List A | |
| _,_ : List A → A → List A | |
| infixl 10 _,_ | |
| data _⊆_ {A} : List A → List A → Set where | |
| stop : ∀ {Γ} → Γ ⊆ Γ | |
| skip : ∀ {Γ Γ' A} → Γ ⊆ Γ' → Γ ⊆ Γ' , A | |
| keep : ∀ {Γ Γ' A} → Γ ⊆ Γ' → Γ , A ⊆ Γ' , A | |
| infix 8 _⊆_ | |
| cong⊆₁ : ∀ {A} {L₁ L₁' L₂ : List A} → L₁ ⊆ L₂ → L₁ ≡ L₁' → L₁' ⊆ L₂ | |
| cong⊆₁ p refl = p | |
| trans⊆ : ∀ {A} {Γ Γ' Γ'' : List A} → Γ ⊆ Γ' → Γ' ⊆ Γ'' → Γ ⊆ Γ'' | |
| trans⊆ e₁ stop = e₁ | |
| trans⊆ e₁ (skip e₂) = skip (trans⊆ e₁ e₂) | |
| trans⊆ stop (keep e₂) = keep e₂ | |
| trans⊆ (skip e₁) (keep e₂) = skip (trans⊆ e₁ e₂) | |
| trans⊆ (keep e₁) (keep e₂) = keep (trans⊆ e₁ e₂) | |
| -- List concatenation. | |
| _⧺_ : ∀ {A} → List A → List A → List A | |
| Γ ⧺ ∅ = Γ | |
| Γ ⧺ Δ , A = (Γ ⧺ Δ) , A | |
| infixl 9 _⧺_ | |
| assoc⧺ : ∀ {A} {L₁ L₂ L₃ : List A} → L₁ ⧺ (L₂ ⧺ L₃) ≡ (L₁ ⧺ L₂) ⧺ L₃ | |
| assoc⧺ {L₃ = ∅} = refl | |
| assoc⧺ {L₃ = xs , x} = cong₂ _,_ (assoc⧺ {L₃ = xs}) refl | |
| unit⧺ₗ : ∀ {A} {L : List A} → ∅ ⧺ L ≡ L | |
| unit⧺ₗ {L = ∅} = refl | |
| unit⧺ₗ {L = xs , x} = cong₂ _,_ (unit⧺ₗ {L = xs}) refl | |
| ⧺-⊆-dist : ∀ {A} {L₁ L₁' L₂ L₂' : List A} → L₁ ⊆ L₁' → L₂ ⊆ L₂' → L₁ ⧺ L₂ ⊆ L₁' ⧺ L₂' | |
| ⧺-⊆-dist stop stop = stop | |
| ⧺-⊆-dist {L₂ = L₂} (skip γ) stop = {!!} --trans⊆ (⧺-⊆-dist γ stop) (⧺-⊆-dist (skip stop) stop) | |
| ⧺-⊆-dist (keep γ) stop = {!⧺-⊆-dist γ stop!} | |
| ⧺-⊆-dist γ (skip δ) = skip (⧺-⊆-dist γ δ) | |
| ⧺-⊆-dist γ (keep δ) = keep (⧺-⊆-dist γ δ) | |
| ⧺-⊆₁ : ∀ {A} {L₁ L₂ : List A} → L₁ ⊆ (L₁ ⧺ L₂) | |
| ⧺-⊆₁ {L₂ = ∅} = stop | |
| ⧺-⊆₁ {L₂ = xs , x} = skip (⧺-⊆₁ {L₂ = xs}) | |
| ⧺-⊆₂ : ∀ {A} {L₁ L₂ : List A} → L₂ ⊆ (L₁ ⧺ L₂) | |
| ⧺-⊆₂ {L₁ = ∅} = cong⊆₁ stop unit⧺ₗ | |
| ⧺-⊆₂ {L₁ = xs , x} {L₂} = {!⧺-⊆₂ {L₁ = xs}!} --trans⊆ (⧺-⊆₂ {L₁ = xs}) (⧺-⊆-dist {L₁ = xs} {L₂ = L₂} (skip stop) stop) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment