Last active
March 23, 2017 12:49
-
-
Save useronym/ec9b4740e025a70c9e87c35be99b592a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Relation.Binary.PropositionalEquality | |
open import Relation.Nullary | |
open import Data.Product | |
open import Data.Empty | |
open import Function | |
data ℕ : Set where | |
zero : ℕ | |
suc : ℕ → ℕ | |
add-suc≡ : ∀ {n m} → n ≡ m → (suc n) ≡ (suc m) | |
add-suc≡ refl = refl | |
mutual | |
record coℕ : Set where | |
coinductive | |
field | |
force : coℕ' | |
data coℕ' : Set where | |
cozero' : coℕ' | |
cosuc' : coℕ → coℕ' | |
open coℕ | |
cozero : coℕ | |
force cozero = cozero' | |
cosuc : coℕ → coℕ | |
force (cosuc n) = cosuc' n | |
omega : coℕ | |
force omega = cosuc' omega | |
force≡ : ∀ {n m} → n ≡ m → (force n) ≡ (force m) | |
force≡ {n} {.n} refl = refl | |
cozero'-not-cosuc' : ∀ {n} → cozero' ≢ cosuc' n | |
cozero'-not-cosuc' {n} () | |
cozero-not-cosuc : ∀ {n} → cozero ≢ cosuc n | |
cozero-not-cosuc {n} coz≡cos = cozero'-not-cosuc' (force≡ coz≡cos) | |
drop-cosuc'≡ : ∀ {n m} → cosuc' n ≡ cosuc' m → n ≡ m | |
drop-cosuc'≡ refl = refl | |
drop-cosuc≡ : ∀ {n m} → cosuc n ≡ cosuc m → n ≡ m | |
drop-cosuc≡ cn≡cm = drop-cosuc'≡ (force≡ cn≡cm) | |
ℕ-to-coℕ : ℕ → coℕ | |
ℕ-to-coℕ zero = cozero | |
ℕ-to-coℕ (suc n) = cosuc (ℕ-to-coℕ n) | |
injective : {A B : Set} → (A → B) → Set | |
injective f = ∀ a b → f a ≡ f b → a ≡ b | |
inj-ℕ-to-coℕ : injective ℕ-to-coℕ | |
inj-ℕ-to-coℕ zero zero fa≡fb = refl | |
inj-ℕ-to-coℕ zero (suc b) fa≡fb = ⊥-elim (cozero-not-cosuc fa≡fb) | |
inj-ℕ-to-coℕ (suc a) zero fa≡fb = ⊥-elim (cozero-not-cosuc (sym fa≡fb)) | |
inj-ℕ-to-coℕ (suc a) (suc b) fa≡fb = add-suc≡ (inj-ℕ-to-coℕ a b (drop-cosuc≡ fa≡fb)) | |
coℕ-to-ℕ? : coℕ → ℕ | |
coℕ-to-ℕ? n with (force n) | |
coℕ-to-ℕ? n | cozero' = zero | |
coℕ-to-ℕ? n | cosuc' n' with (force n') | |
coℕ-to-ℕ? n | cosuc' n' | cozero' = suc zero | |
coℕ-to-ℕ? n | cosuc' n' | (cosuc' x) = suc (suc zero) | |
cant-inject : ¬ (Σ[ f ∈ (coℕ → ℕ) ] (injective f)) | |
cant-inject (f , inj) with (f omega) | inspect f omega | |
cant-inject (f , inj) | fω | [ eq ] = {!!} | |
no-inject-means-not-same : {A B : Set} → ¬ (Σ[ f ∈ (A → B) ] (injective f)) → A ≢ B | |
no-inject-means-not-same no-inj refl = no-inj (id , λ x y z → z) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment