Created
December 1, 2020 23:23
-
-
Save usr-ein/0abfc5b312cd11028eb36bf9b76c5dda to your computer and use it in GitHub Desktop.
Loading and augmenting image dataset in Keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import Counter | |
from typing import Tuple, Dict | |
from os import PathLike | |
from pathlib import Path | |
from os.path import isdir, join as join_paths | |
from tensorflow.python.keras.preprocessing.image import ( | |
ImageDataGenerator, | |
DirectoryIterator, | |
) | |
from tensorflow.python.keras.applications.vgg19 import ( | |
preprocess_input as vgg19_preprocessing_func, | |
) | |
from tensorflow.python.keras.applications.vgg19 import ( | |
preprocess_input as vgg19_preprocessing_func, | |
) | |
def preprocess_function(tensor): | |
# vgg19_preprocessing_func handles 3D and 4D data | |
return vgg19_preprocessing_func(tensor) | |
def get_data_augmentation() -> ImageDataGenerator: | |
validation_split: float = 0.2 | |
return ImageDataGenerator( | |
preprocessing_function=preprocess_function, | |
zoom_range=0.1, | |
shear_range=0.1, | |
rotation_range=7, | |
width_shift_range=0.1, | |
height_shift_range=0.1, | |
horizontal_flip=True, | |
zca_whitening=False, # May be useful, test beforehand | |
validation_split=validation_split, | |
) | |
def load_dataset_generator( | |
data_generator: ImageDataGenerator, | |
folder_path: PathLike, | |
window_size: int, | |
batch_size: int, | |
) -> Tuple[DirectoryIterator, DirectoryIterator]: | |
seed = 42 # For good luck | |
kwargs = dict( | |
directory=folder_path, | |
target_size=(window_size, window_size), | |
classes=["negative", "positive"], | |
class_mode="binary", | |
batch_size=batch_size, | |
shuffle=True, | |
seed=seed, | |
) | |
training = data_generator.flow_from_directory(**kwargs, subset="training") | |
validation = data_generator.flow_from_directory(**kwargs, subset="validation") | |
return training, validation | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment