line_line_intersection()
is a wrapper around Manim's function but it allows to use Line()
objects directly
Last active
October 24, 2024 19:56
-
-
Save uwezi/f3a803fdc17709d95ac4127fbb3e240c to your computer and use it in GitHub Desktop.
[Intersection helpers] Intersections between lines and circles. #manim #geometry #math #circle #line
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from manim import * | |
def circle_line_intersection(circle: Circle, line: Line): | |
# source https://mathworld.wolfram.com/Circle-LineIntersection.html | |
cline = line.copy().shift(-circle.get_arc_center()) | |
x0,y0 = circle.get_arc_center()[0:2] | |
x1,y1 = cline.get_start()[0:2] | |
x2,y2 = cline.get_end()[0:2] | |
r = circle.width/2 | |
dx = x2-x1 | |
dy = y2-y1 | |
dr = np.sqrt(dx**2+dy**2) | |
D = x1*y2 - x2*y1 | |
Delta = r**2*dr**2-D**2 | |
if Delta < 0: | |
return [] | |
sx1 = (D*dy+np.sign(dy)*dx*np.sqrt(Delta))/(dr**2)+x0 | |
sx2 = (D*dy-np.sign(dy)*dx*np.sqrt(Delta))/(dr**2)+x0 | |
sy1 = (-D*dx+np.abs(dy)*np.sqrt(Delta))/(dr**2)+y0 | |
sy2 = (-D*dx-np.abs(dy)*np.sqrt(Delta))/(dr**2)+y0 | |
if Delta==0: | |
return [np.array([sx1,sy1,0])] | |
else: | |
return [ | |
np.array([sx1,sy1,0]), | |
np.array([sx2,sy2,0]) | |
] | |
def circle_circle_intersection(circle1: Circle, circle2: Circle): | |
# source https://www.johndcook.com/blog/2023/08/27/intersect-circles/ | |
c0 = circle1.get_center() | |
c1 = circle2.get_center() | |
r0 = circle1.width/2 | |
r1 = circle2.width/2 | |
v = c1 - c0 | |
d = np.linalg.norm(v) | |
if d > r0 + r1 or d == 0: | |
return [] | |
u = v/np.linalg.norm(v) | |
xvec = c0 + (d**2 - r1**2 + r0**2)*u/(2*d) | |
uperp = np.array([u[1], -u[0], 0]) | |
a = ((-d+r1-r0)*(-d-r1+r0)*(-d+r1+r0)*(d+r1+r0))**0.5/d | |
return [xvec + a*uperp/2, xvec - a*uperp/2] | |
def line_line_intersection(line1: Line, line2: Line): | |
return line_intersection([line1.get_start(),line1.get_end()],[line2.get_start(),line2.get_end()]) | |
class IntersectionTest(Scene): | |
def construct(self): | |
self.add(NumberPlane().add_coordinates()) | |
circ1 = Circle(radius=3, color=RED).shift(2*LEFT) | |
circ2 = Circle(radius=2, color=YELLOW).shift(DOWN) | |
self.play(Create(circ1)) | |
self.play(Create(circ2)) | |
line1 = Line([-5,-2,0],[6,0,0],color=BLUE) | |
line2 = Line([-5,4,0],[5,-2,0],color=MAROON) | |
self.play(Create(line1)) | |
self.play(Create(line2)) | |
self.wait() | |
Cs = circle_circle_intersection(circle1=circ1, circle2=circ2) | |
Cdots = VGroup( | |
*[ | |
VGroup(Dot(point=p, color=ORANGE), MathTex(f"C_{{ {i+1} }}", color=ORANGE).next_to(p,UR,buff=0.05)) | |
for i,p in enumerate(Cs) | |
] | |
) | |
self.play(Create(Cdots)) | |
Ds = circle_line_intersection(circle=circ1, line=line1) | |
Ddots = VGroup( | |
*[ | |
VGroup(Dot(point=p, color=GREEN), MathTex(f"D_{{ {i+1} }}", color=GREEN).next_to(p,DOWN,buff=0.1)) | |
for i,p in enumerate(Ds) | |
] | |
) | |
self.play(Create(Ddots)) | |
Es = circle_line_intersection(circle=circ2, line=line1) | |
Edots = VGroup( | |
*[ | |
VGroup(Dot(point=p, color=TEAL), MathTex(f"E_{{ {i+1} }}", color=TEAL).next_to(p,DOWN,buff=0.1)) | |
for i,p in enumerate(Es) | |
] | |
) | |
self.play(Create(Edots)) | |
F = line_line_intersection(line1=line1, line2=line2) | |
Fdot = VGroup(Dot(point=F, color=WHITE), MathTex(r"F", color=WHITE).next_to(F,UP,buff=0.1)) | |
self.play(Create(Fdot)) | |
self.wait() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment