Last active
October 17, 2024 16:21
-
-
Save uwezi/fb94a62915a90f2289cb0c78cb9bb61a to your computer and use it in GitHub Desktop.
[Triangle construction] Part of a proof for sin(x)sin(y). #manim #triangle #geometry #trigonometry #animation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from manim import * | |
class sinxsiny(Scene): | |
def construct(self): | |
O = Dot([-3,-3.0,0], color=YELLOW, radius=0.05) | |
A = Dot([3,-3.0,0], color=YELLOW, radius=0.05) | |
lbl_O = MathTex(r"O").next_to(O,LEFT) | |
lbl_A = MathTex(r"A").next_to(A,RIGHT) | |
x = 35*DEGREES | |
y = 20*DEGREES | |
OA = Line(O.get_center(),A.get_center()) | |
self.play(Create(OA)) | |
self.play(Create(O),Write(lbl_O)) | |
self.play(Create(A),Write(lbl_A)) | |
OB = Line(O.get_center(),A.get_center()) | |
B = always_redraw(lambda: | |
Dot(OB.get_end(), color=YELLOW, radius=0.05) | |
) | |
lbl_B = always_redraw(lambda: | |
MathTex(r"B").next_to(B.get_center(),RIGHT) | |
) | |
AB = always_redraw(lambda: | |
Line(A.get_center(),B.get_center()) | |
) | |
ang_x = always_redraw(lambda: | |
Arc(radius=0.5, start_angle=0, angle=OB.get_angle()).shift(O.get_center()) | |
) | |
self.play(Create(OB),Create(AB),Create(ang_x)) | |
self.play(Create(B),Write(lbl_B)) | |
self.play( | |
OB.animate.rotate(angle=x,about_point=O.get_center()).scale(1/np.cos(x),about_point=O.get_center()) | |
) | |
lbl_x = MathTex(r"x").rotate(-x/2).shift(0.7*RIGHT).rotate(x/2,about_point=ORIGIN).shift(O.get_center()) | |
self.play(Write(lbl_x)) | |
dummy = OB.copy().rotate(angle=-x,about_point=O.get_center()) | |
OC = dummy.copy() | |
C = always_redraw(lambda: | |
Dot(OC.get_end(), color=YELLOW, radius=0.05) | |
) | |
lbl_C = always_redraw(lambda: | |
MathTex(r"C").next_to(C.get_center(),RIGHT) | |
) | |
BC = always_redraw(lambda: | |
Line(OC.get_end(),dummy.get_end()) | |
) | |
ang_y = always_redraw(lambda: | |
Arc(radius=1, start_angle=dummy.get_angle(), angle=OC.get_angle()-dummy.get_angle()).shift(O.get_center()) | |
) | |
self.play( | |
Create(dummy),Create(OC),Create(BC), | |
Write(lbl_C),Create(C), | |
Create(ang_y) | |
) | |
self.play( | |
OC.animate.rotate(angle=y,about_point=O.get_center()).scale(1/np.cos(y),about_point=O.get_center()) | |
) | |
lbl_y = always_redraw(lambda: | |
MathTex(r"y").rotate(-dummy.get_angle()-x/2).shift(1.2*RIGHT).rotate(+dummy.get_angle()+y/2,about_point=ORIGIN).shift(O.get_center()) | |
) | |
self.play(Write(lbl_y)) | |
self.wait() | |
self.play( | |
Rotate( | |
VGroup(dummy,OC,BC), | |
angle=x, | |
about_point=O.get_center() | |
) | |
) | |
E = Dot(point=[C.get_center()[0],A.get_center()[1],0], color=YELLOW, radius=0.05) | |
lbl_E = MathTex(r"E").next_to(E,DOWN,buff=0.05) | |
D = Dot(point=[C.get_center()[0],B.get_center()[1],0], color=YELLOW, radius=0.05) | |
lbl_D = MathTex(r"D").next_to(D,LEFT) | |
CE = Line(C.get_center(),E.get_center()) | |
BD = Line(B.get_center(),D.get_center()) | |
self.play(Create(CE)) | |
self.play(Create(E),Write(lbl_E)) | |
self.play(Create(BD)) | |
self.play(Create(D),Write(lbl_D)) | |
ang_x.suspend_updating() | |
lbl_x.suspend_updating() | |
ang_y.suspend_updating() | |
lbl_y.suspend_updating() | |
ang_x2 = VGroup(ang_x.copy(),lbl_x.copy()) | |
self.play( | |
ang_x2.animate.shift(C.get_center()-O.get_center()) | |
) | |
self.play( | |
Rotate(ang_x2, -PI/2, about_point=C.get_center()) | |
) | |
ang_x3 = ang_x2.copy() | |
self.play( | |
ang_x3.animate.shift(B.get_center()-C.get_center()) | |
) | |
self.play( | |
Rotate(ang_x3, -PI/2, about_point=B.get_center()) | |
) | |
self.wait() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment