Last active
November 20, 2022 12:41
-
-
Save vacmar01/eb32efe05569fed9a74b39ac629b7a2e to your computer and use it in GitHub Desktop.
A quick and dirty re-implemented a small subset of the fastai Interpretation class for computer vision
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class Interpreter: | |
| def __init__(self, model, dl): | |
| self.model = model | |
| self.dl = dl | |
| if hasattr(model, "loss"): | |
| self.loss_func = self.model.loss | |
| self.losses = torch.empty(0) | |
| self.model.eval() | |
| for batch in tqdm.tqdm(self.dl): | |
| x, y = batch | |
| with torch.no_grad(): | |
| logits = self.model(x) | |
| loss = self.loss_func(logits, y, reduction="none") | |
| self.losses = torch.concat((self.losses, loss)) | |
| def top_losses(self, n=5): | |
| return torch.topk(self.losses, n) | |
| def plot_top_losses(self, n=5): | |
| _, idxs = self.top_losses(n) | |
| self._plot_indices(n,idxs) | |
| def plot_top_losses_3d(self, n=5): | |
| _, idxs = self.top_losses(n) | |
| self._plot_indices_3d(n,idxs) | |
| def plot_results(self, n=5): | |
| idxs = torch.randperm(len(self.dl.dataset))[:n] | |
| self._plot_indices(n,idxs) | |
| def _plot_indices(self, n, idxs): | |
| fig, axs = plt.subplots(ncols=n, figsize=(12,3)) | |
| for i,ax in enumerate(axs): | |
| dsitem = self.dl.dataset[idxs[i]] | |
| lossitem = self.losses[idxs[i]] | |
| logit = self.model(dsitem[0].unsqueeze(0)) | |
| pred = torch.argmax(F.softmax(logit, dim=1), dim=1) | |
| target = dsitem[1] | |
| img = dsitem[0].squeeze() | |
| ax.imshow(img) | |
| ax.set_title(f"{lossitem:.4f} // {pred.item()} // {target}") | |
| def _plot_indices_3d(self, n, idxs): | |
| ncols=4 | |
| fig, axs = plt.subplots(nrows=n, ncols=ncols, figsize=(12,3*n)) | |
| for i in range(n): | |
| axsi = axs[i] | |
| dsitem = self.dl.dataset[idxs[i]] | |
| lossitem = self.losses[idxs[i]] | |
| logit = self.model(dsitem[0].unsqueeze(0)) | |
| pred = torch.argmax(F.softmax(logit, dim=1), dim=1) | |
| target = dsitem[1] | |
| img = dsitem[0].squeeze() | |
| assert len(img.shape) == 3, "Input is not a 3d image volume, use `plot_top_losses()` instead." | |
| z_s,_,_ = img.shape | |
| slices = torch.linspace(0, 100, 4).round().int().tolist() | |
| for j in range(ncols): | |
| axsi[j].imshow(img[slices[j]]) | |
| axsi[j].set_title(f"{lossitem:.4f} // {pred.item()} // {target}") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment