Skip to content

Instantly share code, notes, and snippets.

@vadimkantorov
Last active May 22, 2021 09:53
Show Gist options
  • Save vadimkantorov/12e84531cafee6372e6bdfe6ecce1011 to your computer and use it in GitHub Desktop.
Save vadimkantorov/12e84531cafee6372e6bdfe6ecce1011 to your computer and use it in GitHub Desktop.
import os |
import shutil |
import datetime |
import functools |
import subprocess |
import xml.etree.ElementTree as ET |
|
import numpy as np |
import torch |
|
|
def voc_ap(rec, prec, use_07_metric=False): |
""" ap = voc_ap(rec, prec, [use_07_metric]) |
Compute VOC AP given precision and recall. |
If use_07_metric is true, uses the |
VOC 07 11 point method (default:False). |
""" |
if use_07_metric: |
# 11 point metric |
ap = 0. |
for t in np.arange(0., 1.1, 0.1): |
if np.sum(rec >= t) == 0: |
p = 0 |
else: |
p = np.max(prec[rec >= t]) |
ap = ap + p / 11. |
else: |
# correct AP calculation |
# first append sentinel values at the end |
mrec = np.concatenate(([0.], rec, [1.])) |
mpre = np.concatenate(([0.], prec, [0.])) |
|
# compute the precision envelope |
for i in range(mpre.size - 1, 0, -1): |
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
# to calculate area under PR curve, look for points |
# where X axis (recall) changes value |
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
# and sum (\Delta recall) * prec |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
return ap |
|
@functools.lru_cache(maxsize = None) |
def parse_rec(filename): |
""" Parse a PASCAL VOC xml file """ |
tree = ET.parse(filename) |
objects = [] |
for obj in tree.findall('object'): |
obj_struct = {} |
obj_struct['name'] = obj.find('name').text |
obj_struct['pose'] = obj.find('pose').text |
obj_struct['truncated'] = int(obj.find('truncated').text) |
obj_struct['difficult'] = int(obj.find('difficult').text) |
bbox = obj.find('bndbox') |
obj_struct['bbox'] = [int(bbox.find('xmin').text), |
int(bbox.find('ymin').text), |
int(bbox.find('xmax').text), |
int(bbox.find('ymax').text)] |
objects.append(obj_struct) |
|
return objects |
|
|
|
def voc_eval(detpath, |
annopath, |
imagesetfile, |
classname, |
ovthresh=0.5, |
use_07_metric=False): |
|
# -------------------------------------------------------- |
# Fast/er R-CNN |
# Licensed under The MIT License [see LICENSE for details] |
# Written by Bharath Hariharan |
# -------------------------------------------------------- |
|
"""rec, prec, ap = voc_eval(detpath, |
annopath, |
imagesetfile, |
classname, |
[ovthresh], |
[use_07_metric]) |
Top level function that does the PASCAL VOC evaluation. |
detpath: Path to detections |
detpath.format(classname) should produce the detection results file. |
annopath: Path to annotations |
annopath.format(imagename) should be the xml annotations file. |
imagesetfile: Text file containing the list of images, one image per line. |
classname: Category name (duh) |
cachedir: Directory for caching the annotations |
[ovthresh]: Overlap threshold (default = 0.5) |
[use_07_metric]: Whether to use VOC07's 11 point AP computation |
(default False) |
""" |
def iou(BBGT, bb): |
ixmin = np.maximum(BBGT[:, 0], bb[0]) |
iymin = np.maximum(BBGT[:, 1], bb[1]) |
ixmax = np.minimum(BBGT[:, 2], bb[2]) |
iymax = np.minimum(BBGT[:, 3], bb[3]) |
iw = np.maximum(ixmax - ixmin + 1., 0.) |
ih = np.maximum(iymax - iymin + 1., 0.) |
inters = iw * ih |
|
# union |
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
(BBGT[:, 2] - BBGT[:, 0] + 1.) * |
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
|
overlaps = inters / uni |
ovmax = np.max(overlaps) |
jmax = np.argmax(overlaps) |
return ovmax, jmax |
|
# assumes detections are in detpath.format(classname) |
# assumes annotations are in annopath.format(imagename) |
# assumes imagesetfile is a text file with each line an image name |
# cachedir caches the annotations in a pickle file |
|
# read list of images |
if isinstance(imagesetfile, list): |
lines = imagesetfile |
else: |
with open(imagesetfile, 'r') as f: |
lines = f.readlines() |
imagenames = [x.strip() for x in lines] |
|
# load annots |
recs = {} |
if isinstance(annopath, list): |
for a in annopath: |
imagename = os.path.splitext(os.path.basename(a))[0] |
recs[imagename] = parse_rec(a) |
else: |
for i, imagename in enumerate(imagenames): |
recs[imagename] = parse_rec(annopath.format(imagename)) |
|
# extract gt objects for this class |
class_recs = {} |
npos = 0 |
for imagename in imagenames: |
R = [obj for obj in recs[imagename] if obj['name'] == classname] |
bbox = np.array([x['bbox'] for x in R]) |
difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
det = [False] * len(R) |
npos = npos + sum(~difficult) |
class_recs[imagename] = {'bbox': bbox, |
'difficult': difficult, |
'det': det} |
|
# read dets |
if isinstance(detpath, list): |
lines = detpath |
else: |
detfile = detpath.format(classname) |
with open(detfile, 'r') as f: |
lines = f.readlines() |
|
splitlines = [x.strip().split(' ') for x in lines] |
image_ids = [x[0] for x in splitlines] |
confidence = np.array([float(x[1]) for x in splitlines]) |
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
|
if BB.size == 0: |
return 0, 0, 0 |
|
# sort by confidence |
sorted_ind = np.argsort(-confidence) |
BB = BB[sorted_ind, :] |
|
image_ids = [image_ids[x] for x in sorted_ind] |
|
# go down dets and mark TPs and FPs |
nd = len(image_ids) |
tp = np.zeros(nd) |
fp = np.zeros(nd) |
for d in range(nd): |
R = class_recs[image_ids[d]] |
bb = BB[d, :].astype(float) |
ovmax = -np.inf |
BBGT = R['bbox'].astype(float) |
|
if BBGT.size > 0: |
ovmax, jmax = iou(BBGT, bb) |
|
if ovmax > ovthresh: |
if not R['difficult'][jmax]: |
if not R['det'][jmax]: |
tp[d] = 1. |
R['det'][jmax] = 1 |
else: |
fp[d] = 1. |
else: |
fp[d] = 1. |
|
# compute precision recall |
fp = np.cumsum(fp) |
tp = np.cumsum(tp) |
rec = tp / float(npos) |
# avoid divide by zero in case the first detection matches a difficult |
# ground truth |
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
ap = voc_ap(rec, prec, use_07_metric) |
|
return rec, prec, ap |
|
def bbox_nms(boxes, scores, overlap_threshold = 0.4, score_threshold = 0.0, mask = False): |
|
def overlap(box1, box2 = None, rectint = False, eps = 1e-6): |
area = lambda boxes = None, x1 = None, y1 = None, x2 = None, y2 = None: (boxes[..., 2] - boxes[..., 0]) * (boxes[..., 3] - boxes[..., 1]) if boxes is not None else (x2 - x1).clamp(min = 0) * (y2 - y1).clamp(min = 0) |
|
if box2 is None and not isinstance(box1, list) and box1.dim() == 3: |
return torch.stack(list(map(overlap, box1))) |
b1, b2 = [(b if b.dim() == 2 else b.unsqueeze(0)).t().contiguous() for b in [box1, (box2 if box2 is not None else box1)]] |
|
xx1 = torch.max(b1[0].unsqueeze(1), b2[0].unsqueeze(0)) |
yy1 = torch.max(b1[1].unsqueeze(1), b2[1].unsqueeze(0)) |
xx2 = torch.min(b1[2].unsqueeze(1), b2[2].unsqueeze(0)) |
yy2 = torch.min(b1[3].unsqueeze(1), b2[3].unsqueeze(0)) |
|
inter = area(x1 = xx1, y1 = yy1, x2 = xx2, y2 = yy2) |
return inter / (area(b1.t()).unsqueeze(1) + area(b2.t()).unsqueeze(0) - inter + eps) if not rectint else inter |
|
O = overlap(boxes)
I = scores.sort(0)[1]
M = scores.gather(0, I).ge(score_threshold)
M = M if M.any() else M.fill_(1)
pick = []
for i, m in zip(I.t(), M.t()):
p = []
i = i[m]
while len(i) > 1:
p.append(i[-1])
m = O[:, i[-1]][i].lt(overlap_threshold)
m[-1] = 0
i = i[m]
pick.append(torch.tensor(p + i.tolist(), dtype = torch.int64))
return pick if not mask else torch.stack([torch.zeros(len(scores), dtype = torch.bool).scatter_(0, p, 1) for p in pick])
def package_submission(out_dir, image_file_name, class_labels, VOCYEAR, SUBSET, TASK, tar = True, **kwargs):
def cls(file_path, class_label_ind, scores):
with open(file_path, 'w') as f:
f.writelines(map('{} {}\n'.format, image_file_name, scores[:, class_label_ind].tolist()))
def det(file_path, class_label_ind, scores, proposals, keep):
zipped = []
for example_idx, basename in enumerate(image_file_name):
I = keep[example_idx][class_label_ind]
zipped.extend((basename, s) + tuple(p) for s, p in zip(scores[example_idx][I, class_label_ind].tolist(), proposals[example_idx][I, :4].add(1).tolist()))
with open(file_path, 'w') as f:
f.writelines(map('{} {} {:.0f} {:.0f} {:.0f} {:.0f} \n'.format, *zip(*zipped)))
task_a, task_b = TASK.split('_')
resdir = os.path.join(out_dir, 'results')
respath = os.path.join(resdir, VOCYEAR, 'Main', '%s_{}_{}_%s.txt'.format(task_b, SUBSET))
if os.path.exists(resdir):
shutil.rmtree(resdir)
os.makedirs(os.path.join(resdir, VOCYEAR, 'Main'))
for class_label_ind, class_label in enumerate(class_labels):
dict(det = det, cls = cls)[task_b](respath.replace('%s', '{}').format(task_a, class_label), class_label_ind, **kwargs)
if tar:
subprocess.check_call(['tar', '-czf', 'results-{}-{}-{}.tar.gz'.format(VOCYEAR, TASK, SUBSET), 'results'], cwd = out_dir)
return respath
def detection_mean_ap(out_dir, image_file_name, class_labels, VOCYEAR, SUBSET, VOC_DEVKIT_VOCYEAR, scores = None, boxes = None, nms_score_threshold = 1e-4, nms_overlap_threshold = 0.4, tar = False, octave = False, cmd = 'octave --eval', env = None, stdout_stderr = open(os.devnull, 'wb'), do_nms = True, use_07_metric = False):
if scores is not None:
nms = list(map(lambda s, p: bbox_nms(p, s, overlap_threshold = nms_overlap_threshold, score_threshold = nms_score_threshold), scores, boxes )) if do_nms else [torch.arange(len(p)) for p in boxes]
else:
nms = torch.arange(len(class_labels)).unsqueeze(0).unsqueeze(-1).expand(len(image_file_name), len(class_labels), 1)
scores = torch.zeros(len(image_file_name), len(class_labels), len(class_labels))
imgsetpath = os.path.join(VOC_DEVKIT_VOCYEAR, 'ImageSets', 'Main', SUBSET + '.txt')
detrespath = package_submission(out_dir, image_file_name, class_labels, VOCYEAR, SUBSET, 'comp4_det', tar = tar, scores = scores, proposals = boxes, nms = nms)
if octave:
imgsetpath_fix = os.path.join(out_dir, detection_mean_ap.__name__ + '.txt')
with open(imgsetpath_fix, 'w') as f:
f.writelines([line[:-1] + ' -1\n' for line in open(imgsetpath)])
procs = [subprocess.Popen(cmd.split() + ["oldpwd = pwd; cd('{}/..'); addpath(fullfile(pwd, 'VOCcode')); VOCinit; cd(oldpwd); VOCopts.testset = '{}'; VOCopts.detrespath = '{}'; VOCopts.imgsetpath = '{}'; classlabel = '{}'; warning('off', 'Octave:possible-matlab-short-circuit-operator'); warning('off', 'Octave:num-to-str'); [rec, prec, ap] = VOCevaldet(VOCopts, 'comp4', classlabel, false); dlmwrite(sprintf(VOCopts.detrespath, 'resu4', classlabel), ap); quit;".format(VOC_DEVKIT_VOCYEAR, SUBSET, detrespath, imgsetpath_fix, class_label)], stdout = stdout_stderr, stderr = stdout_stderr, env = env) for class_label in class_labels]
res = list(map(lambda class_label, proc: proc.wait() or float(open(detrespath % ('resu4', class_label)).read()), class_labels, procs))
else:
res = [voc_eval(detrespath.replace('%s', '{}').format('comp4', '{}'), os.path.join(VOC_DEVKIT_VOCYEAR, 'Annotations', '{}.xml'), imgsetpath, class_label, use_07_metric = use_07_metric)[-1] for class_label in class_labels]
return torch.tensor(res).mean(), res
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment