Last active
November 12, 2021 16:34
-
-
Save vadimkantorov/67fe785ed0bf31727af29a3584b87be1 to your computer and use it in GitHub Desktop.
Mini-batching within the model in PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection, https://arxiv.org/abs/2004.04725 | |
# https://github.com/NVlabs/wetectron/issues/72 | |
# https://discuss.pytorch.org/t/mini-batching-gradient-accumulation-within-the-model/136460 | |
import torch | |
import torch.nn as nn | |
class SequentialBackprop(nn.Module): | |
def __init__(self, module, batch_size = 1): | |
super().__init__() | |
self.module = module | |
self.batch_size = batch_size | |
def forward(self, x): | |
y = self.module(x.detach()) | |
return self.Function.apply(x, y, self.batch_size, self.module) | |
class Function(torch.autograd.Function): | |
@staticmethod | |
def forward(ctx, x, y, batch_size, module): | |
ctx.save_for_backward(x) | |
ctx.batch_size = batch_size | |
ctx.module = module | |
return y | |
@staticmethod | |
def backward(ctx, grad_output): | |
(x,) = ctx.saved_tensors | |
grads = [] | |
for x_mini, g_mini in zip(x.split(ctx.batch_size), grad_output.split(ctx.batch_size)): | |
with torch.enable_grad(): | |
x_mini = x_mini.detach().requires_grad_() | |
x_mini.retain_grad() | |
y_mini = ctx.module(x_mini) | |
torch.autograd.backward(y_mini, g_mini) | |
grads.append(x_mini.grad) | |
return torch.cat(grads), None, None, None | |
if __name__ == '__main__': | |
backbone = nn.Linear(3, 6) | |
neck = nn.Linear(6, 12) | |
head = nn.Linear(12, 1) | |
model = nn.Sequential(backbone, SequentialBackprop(neck, batch_size = 16), head) | |
print('before', neck.weight.grad) | |
x = torch.rand(512, 3) | |
model(x).sum().backward() | |
print('after', neck.weight.grad) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment