Skip to content

Instantly share code, notes, and snippets.

@valkheim
Created July 27, 2020 18:51
Show Gist options
  • Save valkheim/4877dabc412befd0dc313e431abcdbec to your computer and use it in GitHub Desktop.
Save valkheim/4877dabc412befd0dc313e431abcdbec to your computer and use it in GitHub Desktop.
==> main.py <==
import math
from Crypto.Hash import SHA256
from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes, inverse, isPrime
import pyecm
def phi(p, q):
" Euler totient "
return (p - 1) * (q - 1)
def modular_multiplicative_inverse(e, p, q):
""" modinv a is x such that ax cong 1 mod m)
=> ax cong 1 mod m
=> ax -1 = (-y)m
=> ax + my = egcd(a,m) = 1 (bezout identity)
"""
n = phi(p, q)
def egcd(a, b):
""" m, x, y = egcd(a, b) """
if a == 0:
return (b, 0, 1)
m, y, x, = egcd(b % a, a)
return m, x - (b // a) * y, y
def modinv(e, phi):
""" retrieve private key given e and totient """
""" aka cryptodome inverse(e, phi) """
m, bezout_x, bezout_y = egcd(e, phi)
return bezout_x % phi
def encrypt(clear, e, n):
return pow(clear, e, n)
def decrypt(encrypted, d, n):
return pow(encrypted, d, n)
def sign(message: str, hash_technique: str, private_key: int, n: int):
if hash_technique == "sha256":
hasher = SHA256.new()
assert hasher is not None
hasher.update(bytes(m.encode()))
H = int(hasher.hexdigest(), 16)
return encrypt(H, private_key, n)
def decompose(n):
return pyecm.defactor(n)
==> pyecm.py <==
#!/usr/bin/python3
'''
You should install psyco and gmpy if you want maximal speed.
Filename: pyecm
Authors: Eric Larson <[email protected]>, Martin Kelly <[email protected]>, Matt Ford <[email protected]>
License: GNU GPL (see <http://www.gnu.org/licenses/gpl.html> for more information.
Description: Factors a number using the Elliptic Curve Method, a fast algorithm for numbers < 50 digits.
We are using curves in Suyama's parametrization, but points are in affine coordinates, and the curve is in Wierstrass form.
The idea is to do many curves in parallel to take advantage of batch inversion algorithms. This gives asymptotically 7 modular multiplications per bit.
WARNING: pyecm is NOT a general-purpose number theory or elliptic curve library. Many of the functions have confusing calling syntax, and some will rather unforgivingly crash or return bad output if the input is not formatted exactly correctly. That said, there are a couple of functions that you CAN safely import into another program. These are: factors, isprime. However, be sure to read the documentation for each function that you use.
'''
import math
import sys
import random
try:
import psyco
psyco.full()
PSYCO_EXISTS = True
except ImportError:
PSYCO_EXISTS = False
try: # Try to use gmpy
from gmpy2 import isqrt as sqrt
from gmpy2 import iroot as root
from gmpy2 import gcd, invert, mpz, next_prime
import gmpy2
GMPY_EXISTS = True
except ImportError:
try:
from gmpy import gcd, invert, mpz, next_prime, sqrt, root
GMPY_EXISTS = True
except ImportError:
GMPY_EXISTS = False
if not GMPY_EXISTS:
PRIMES = (5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 167)
GMPY_EXISTS = False
def gcd(a, b):
'''Computes the Greatest Common Divisor of a and b using the standard quadratic time improvement to the Euclidean Algorithm.
Returns the GCD of a and b.'''
if b == 0:
return a
elif a == 0:
return b
count = 0
if a < 0:
a = -a
if b < 0:
b = -b
while not ((a & 1) | (b & 1)):
count += 1
a >>= 1
b >>= 1
while not a & 1:
a >>= 1
while not b & 1:
b >>= 1
if b > a:
b,a = a,b
while b != 0 and a != b:
a -= b
while not (a & 1):
a >>= 1
if b > a:
b, a = a, b
return a << count
def invert(a, b):
'''Computes the inverse of a modulo b. b must be odd.
Returns the inverse of a (mod b).'''
if a == 0 or b == 0:
return 0
truth = False
if a < 0:
truth = True
a = -a
b_orig = b
alpha = 1
beta = 0
while not a & 1:
if alpha & 1:
alpha += b_orig
alpha >>= 1
a >>= 1
if b > a:
a, b = b, a
alpha, beta = beta, alpha
while b != 0 and a != b:
a -= b
alpha -= beta
while not a & 1:
if alpha & 1:
alpha += b_orig
alpha >>= 1
a >>= 1
if b > a:
a,b = b,a
alpha, beta = beta, alpha
if a == b:
a -= b
alpha -= beta
a, b = b, a
alpha, beta = beta, alpha
if a != 1:
return 0
if truth:
alpha = b_orig - alpha
return alpha
def next_prime(n):
'''Finds the next prime after n.
Returns the next prime after n.'''
n += 1
if n <= 167:
if n <= 23:
if n <= 3:
return 3 - (n <= 2)
n += (n & 1) ^ 1
return n + (((4 - (n % 3)) >> 1) & 2)
n += (n & 1) ^ 1
inc = n % 3
n += ((4 - inc) >> 1) & 2
inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
while 0 in (n % 5, n % 7, n % 11):
n += inc
inc = 6 - inc
return n
n += (n & 1) ^ 1
inc = n % 3
n += ((4 - inc) >> 1) & 2
inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
should_break = False
while 1:
for prime in PRIMES:
if not n % prime:
should_break = True
break
if should_break:
should_break = False
n += inc
inc = 6 - inc
continue
p = 1
for i in range(int(math.log(n) / LOG_2), 0, -1):
p <<= (n >> i) & 1
p = (p * p) % n
if p == 1:
return n
n += inc
inc = 6 - inc
def mpz(n):
'''A dummy function to ensure compatibility with those that do not have gmpy.
Returns n.'''
return n
def root(n, k):
'''Finds the floor of the kth root of n. This is a duplicate of gmpy's root function.
Returns a tuple. The first item is the floor of the kth root of n. The second is 1 if the root is exact (as in, sqrt(16)) and 0 if it is not.'''
low = 0
high = n + 1
while high > low + 1:
mid = (low + high) >> 1
mr = mid**k
if mr == n:
return (mid, 1)
if mr < n:
low = mid
if mr > n:
high = mid
return (low, 0)
def sqrt(n):
return root(n, 2)[0]
# We're done importing. Now for some constants.
if GMPY_EXISTS:
INV_C = 1.4
else:
if PSYCO_EXISTS:
INV_C = 7.3
else:
INV_C = 13.0
LOG_2 = math.log(2)
LOG_4 = math.log(4)
LOG_3_MINUS_LOG_LOG_2 = math.log(3) - math.log(LOG_2)
LOG_4_OVER_9 = LOG_4 / 9
_3_OVER_LOG_2 = 3 / LOG_2
_5_LOG_10 = 5 * math.log(10)
_7_OVER_LOG_2 = 7 / LOG_2
BIG = 2.0**512
BILLION = 10**9 # Something big that fits into an int.
MULT = math.log(3) / LOG_2
ONE = mpz(1)
SMALL = 2.0**(-30)
SMALLEST_COUNTEREXAMPLE_FASTPRIME = 2047
T = (type(mpz(1)), type(1), type(1))
DUMMY = 'dummy' # Dummy value throughout the program
VERSION = '2.0.3 (Python 3)'
_12_LOG_2_OVER_49 = 12 * math.log(2) / 49
RECORD = 1162795072109807846655696105569042240239
class ts:
'''Does basic manipulations with Taylor Series (centered at 0). An example call to ts:
a = ts(7, 23, [1<<23, 2<<23, 3<<23]) -- now, a represents 1 + 2x + 3x^2. Here, computations will be done to degree 7, with accuracy 2^(-23). Input coefficients must be integers.'''
def __init__(self, degree, acc, p):
self.acc = acc
self.coefficients = p[:degree + 1]
while len(self.coefficients) <= degree:
self.coefficients.append(0)
def add(self, a, b):
'''Adds a and b'''
b_ = b.coefficients[:]
a_ = a.coefficients[:]
self.coefficients = []
while len(b_) > len(a_):
a_.append(0)
while len(b_) < len(a_):
b_.append(0)
for i in range(len(a_)):
self.coefficients.append(a_[i] + b_[i])
self.acc = a.acc
def ev(self, x):
'''Returns a(x)'''
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer *= x
answer += self.coefficients[i]
return answer
def evh(self):
'''Returns a(1/2)'''
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer >>= 1
answer += self.coefficients[i]
return answer
def evmh(self):
'''Returns a(-1/2)'''
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer = - answer >> 1
answer += self.coefficients[i]
return answer
def int(self):
'''Replaces a by an integral of a'''
self.coefficients = [0] + self.coefficients
for i in range(1, len(self.coefficients)):
self.coefficients[i] = self.coefficients[i] // i
def lindiv(self, a):
'''a.lindiv(k) -- sets a/(x-k/2) for integer k'''
for i in range(len(self.coefficients) - 1):
self.coefficients[i] <<= 1
self.coefficients[i] = self.coefficients[i] // a
self.coefficients[i + 1] -= self.coefficients[i]
self.coefficients[-1] <<= 1
self.coefficients[-1] = self.coefficients[-1] // a
def neg(self):
'''Sets a to -a'''
for i in range(len(self.coefficients)):
self.coefficients[i] = - self.coefficients[i]
def set(self, a):
'''a.set(b) sets a to b'''
self.coefficients = a.coefficients[:]
self.acc = a.acc
def simp(self):
'''Turns a into a type of Taylor series that can be fed into ev, but cannot be computed with further.'''
for i in range(len(self.coefficients)):
shift = max(0, int(math.log(abs(self.coefficients[i]) + 1) / LOG_2) - 1000)
self.coefficients[i] = float(self.coefficients[i] >> shift)
shift = self.acc - shift
for _ in range(shift >> 9):
self.coefficients[i] /= BIG
self.coefficients[i] /= 2.0**(shift & 511)
if (abs(self.coefficients[i] / self.coefficients[0]) <= SMALL):
self.coefficients = self.coefficients[:i]
break
# Functions are declared in alphabetical order except when dependencies force them to be at the end.
def add(p1, p2, n):
'''Adds first argument to second (second argument is not preserved). The arguments are points on an elliptic curve. The first argument may be a tuple instead of a list. The addition is thus done pointwise. This function has bizzare input/output because there are fast algorithms for inverting a bunch of numbers at once.
Returns a list of the addition results.'''
inv = list(range(len(p1)))
for i in range(len(p1)):
inv[i] = p1[i][0] - p2[i][0]
inv = parallel_invert(inv, n)
if not isinstance(inv, list):
return inv
for i in range(len(p1)):
m = ((p1[i][1] - p2[i][1]) * inv[i]) % n
p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
p2[i][1] = (m * (p1[i][0] - p2[i][0]) - p1[i][1]) % n
return p2
def add_sub_x_only(p1, p2, n):
'''Given a pair of lists of points p1 and p2, computes the x-coordinates of
p1[i] + p2[i] and p1[i] - p2[i] for each i.
Returns two lists, the first being the sums and the second the differences.'''
sums = list(range(len(p1)))
difs = list(range(len(p1)))
for i in range(len(p1)):
sums[i] = p2[i][0] - p1[i][0]
sums = parallel_invert(sums, n)
if not isinstance(sums, list):
return (sums, None)
for i in range(len(p1)):
ms = ((p2[i][1] - p1[i][1]) * sums[i]) % n
md = ((p2[i][1] + p1[i][1]) * sums[i]) % n
sums[i] = (ms * ms - p1[i][0] - p2[i][0]) % n
difs[i] = (md * md - p1[i][0] - p2[i][0]) % n
sums = tuple(sums)
difs = tuple(difs)
return (sums, difs)
def atdn(a, d, n):
'''Calculates a to the dth power modulo n.
Returns the calculation's result.'''
x = 1
pos = int(math.log(d) / LOG_2)
while pos >= 0:
x = (x * x) % n
if (d >> pos) & 1:
x *= a
pos -= 1
return x % n
def copy(p):
'''Copies a list using only deep copies.
Returns a copy of p.'''
answer = []
for i in p:
answer.append(i[:])
return answer
def could_be_prime(n):
'''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits.
Returns whether it is possible for n to be prime (True or False).
'''
if n < 2:
return False
if n == 2:
return True
if not int(n) & 1:
return False
product = ONE
log_n = int(math.log(n)) + 1
bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1
if bound * log_n >= n:
bound = 1
log_n = int(sqrt(n))
prime_bound = 0
prime = 3
for _ in range(bound):
p = []
prime_bound += log_n
while prime <= prime_bound:
p.append(prime)
prime = next_prime(prime)
if p != []:
p = prod(p)
product = (product * p) % n
return gcd(n, product) == 1
def double(p, n):
'''Doubles each point in the input list. Much like the add function, we take advantage of fast inversion.
Returns the doubled list.'''
inv = list(range(len(p)))
for i in range(len(p)):
inv[i] = p[i][1] << 1
inv = parallel_invert(inv, n)
if not isinstance(inv, list):
return inv
for i in range(len(p)):
x = p[i][0]
m = (x * x) % n
m = ((m + m + m + p[i][2]) * inv[i]) % n
p[i][0] = (m * m - x - x) % n
p[i][1] = (m * (x - p[i][0]) - p[i][1]) % n
return p
def fastprime(n):
'''Tests for primality of n using an algorithm that is very fast, O(N**3 / log(N)) (assuming quadratic multiplication) where n has N digits, but ocasionally inaccurate for n >= 2047.
Returns the primality of n (True or False).'''
if not could_be_prime(n):
return False
if n == 2:
return True
j = 1
d = n >> 1
while not d & 1:
d >>= 1
j += 1
p = 1
pos = int(math.log(d) / LOG_2)
while pos >= 0:
p = (p * p) % n
p <<= (d >> pos) & 1
pos -= 1
if p in (n - 1, n + 1):
return True
for _ in range(j):
p = (p * p) % n
if p == 1:
return False
elif p == n - 1:
return True
return False
def greatest_n(phi_max):
'''Finds the greatest n such that phi(n) < phi_max.
Returns the greatest n such that phi(n) < phi_max.'''
phi_product = 1
product = 1
prime = 1
while phi_product <= phi_max:
prime = next_prime(prime)
phi_product *= prime - 1
product *= prime
n_max = (phi_max * product) // phi_product
phi_values = list(range(n_max))
prime = 2
while prime <= n_max:
for i in range(0, n_max, prime):
phi_values[i] -= phi_values[i] // prime
prime = next_prime(prime)
for i in range(n_max - 1, 0, -1):
if phi_values[i] <= phi_max:
return i
def inv_const(n):
'''Finds a constant relating the complexity of multiplication to that of modular inversion.
Returns the constant for a given n.'''
return int(INV_C * math.log(n)**0.42)
def naf(d):
'''Finds a number's non-adjacent form, reverses the bits, replaces the
-1's with 3's, and interprets the result base 4.
Returns the result interpreted as if in base 4.'''
g = 0
while d:
g <<= 2
g ^= ((d & 2) & (d << 1)) ^ (d & 1)
d += (d & 2) >> 1
d >>= 1
return g
def parallel_invert(l, n):
'''Inverts all elements of a list modulo some number, using 3(n-1) modular multiplications and one inversion.
Returns the list with all elements inverted modulo 3(n-1).'''
l_ = l[:]
for i in range(len(l)-1):
l[i+1] = (l[i] * l[i+1]) % n
try:
inv = invert(l[-1], n)
except ZeroDivisionError:
inv = 0
if inv == 0:
return gcd(l[-1], n)
for i in range(len(l)-1, 0, -1):
l[i] = (inv * l[i-1]) % n
inv = (inv * l_[i]) % n
l[0] = inv
return l
def prod(p):
'''Multiplies all elements of a list together. The order in which the
elements are multiplied is chosen to take advantage of Python's Karatsuba
Multiplication
Returns the product of everything in p.'''
jump = 1
while jump < len(p):
for i in range(0, len(p) - jump, jump << 1):
p[i] *= p[i + jump]
p[i + jump] = None
jump <<= 1
return p[0]
def rho_ev(x, ts):
'''Evaluates Dickman's rho function, which calculates the asymptotic
probability as N approaches infinity (for a given x) that all of N's factors
are bounded by N^(1/x).'''
return ts[int(x)].ev(x - int(x) - 0.5)
def rho_ts(n):
'''Makes a list of Taylor series for the rho function centered at 0.5, 1.5, 2.5 ... n + 0.5. The reason this is necessary is that the radius of convergence of rho is small, so we need lots of Taylor series centered at different places to correctly evaluate it.
Returns a list of Taylor series.'''
f = ts(10, 10, [])
answer = [ts(10, 10, [1])]
for _ in range(n):
answer.append(ts(10, 10, [1]))
deg = 5
acc = 50 + n * int(1 + math.log(1 + n) + math.log(math.log(3 + n)))
r = 1
rho_series = ts(1, 10, [0])
while r != rho_series.coefficients[0]:
deg = (deg + (deg << 2)) // 3
r = rho_series.coefficients[0]
rho_series = ts(deg, acc, [(1) << acc])
center = 0.5
for i in range(1, n+1):
f.set(rho_series)
center += 1
f.lindiv(int(2*center))
f.int()
f.neg()
d = ts(deg, acc, [rho_series.evh() - f.evmh()])
f.add(f, d)
rho_series.set(f)
f.simp()
answer[i].set(f)
rho_series.simp()
return answer
def sub_sub_sure_factors(f, u, curve_parameter):
'''Finds all factors that can be found using ECM with a smoothness bound of u and sigma and give curve parameters. If that fails, checks for being a prime power and does Fermat factoring as well.
Yields factors.'''
while not (f & 1):
yield 2
f >>= 1
while not (f % 3):
yield 3
f = f // 3
if isprime(f):
yield f
return
log_u = math.log(u)
u2 = int(_7_OVER_LOG_2 * u * log_u / math.log(log_u))
primes = []
still_a_chance = True
log_mo = math.log(f + 1 + sqrt(f << 2))
g = gcd(curve_parameter, f)
if g not in (1, f):
for factor in sub_sub_sure_factors(g, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(f//g, u, curve_parameter):
yield factor
return
g2 = gcd(curve_parameter**2 - 5, f)
if g2 not in (1, f):
for factor in sub_sub_sure_factors(g2, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(f // g2, u, curve_parameter):
yield factor
return
if f in (g, g2):
yield f
while still_a_chance:
p1 = get_points([curve_parameter], f)
for prime in primes:
p1 = multiply(p1, prime, f)
if not isinstance(p1, list):
if p1 != f:
for factor in sub_sub_sure_factors(p1, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(f//p1, u, curve_parameter):
yield factor
return
else:
still_a_chance = False
break
if not still_a_chance:
break
prime = 1
still_a_chance = False
while prime < u2:
prime = next_prime(prime)
should_break = False
for _ in range(int(log_mo / math.log(prime))):
p1 = multiply(p1, prime, f)
if not isinstance(p1, list):
if p1 != f:
for factor in sub_sub_sure_factors(p1, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(f//p1, u, curve_parameter):
yield factor
return
else:
still_a_chance = True
primes.append(prime)
should_break = True
break
if should_break:
break
for i in range(2, int(math.log(f) / LOG_2) + 2):
r = root(f, i)
if r[1]:
for factor in sub_sub_sure_factors(r[0], u, curve_parameter):
for _ in range(i):
yield factor
return
a = 1 + sqrt(f)
bsq = a * a - f
iter = 0
while bsq != sqrt(bsq)**2 and iter < 3:
a += 1
iter += 1
bsq += a + a - 1
if bsq == sqrt(bsq)**2:
b = sqrt(bsq)
for factor in sub_sub_sure_factors(a - b, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(a + b, u, curve_parameter):
yield factor
return
yield f
return
def sub_sure_factors(f, u, curve_params):
'''Factors n as far as possible using the fact that f came from a mainloop call.
Yields factors of n.'''
if len(curve_params) == 1:
for factor in sub_sub_sure_factors(f, u, curve_params[0]):
yield factor
return
c1 = curve_params[:len(curve_params) >> 1]
c2 = curve_params[len(curve_params) >> 1:]
if mainloop(f, u, c1) == 1:
for factor in sub_sure_factors(f, u, c2):
yield factor
return
if mainloop(f, u, c2) == 1:
for factor in sub_sure_factors(f, u, c1):
yield factor
return
for factor in sub_sure_factors(f, u, c1):
if isprime(factor):
yield factor
else:
for factor_of_factor in sub_sure_factors(factor, u, c2):
yield factor_of_factor
return
def subtract(p1, p2, n):
'''Given two points on an elliptic curve, subtract them pointwise.
Returns the resulting point.'''
inv = list(range(len(p1)))
for i in range(len(p1)):
inv[i] = p2[i][0] - p1[i][0]
inv = parallel_invert(inv, n)
if not isinstance(inv, list):
return inv
for i in range(len(p1)):
m = ((p1[i][1] + p2[i][1]) * inv[i]) % n
p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
p2[i][1] = (m * (p1[i][0] - p2[i][0]) + p1[i][1]) % n
return p2
def congrats(f, veb):
'''Prints a congratulations message when a record factor is found. This only happens if the second parameter (verbosity) is set to True.
Returns nothing.'''
if veb and f > RECORD:
print('Congratulations! You may have found a record factor via pyecm!')
print('Please email the Mainloop call to Eric Larson <[email protected]>')
return
def sure_factors(n, u, curve_params, veb, ra, ov, tdb, pr):
'''Factor n as far as possible with given smoothness bound and curve parameters, including possibly (but very rarely) calling ecm again.
Yields factors of n.'''
f = mainloop(n, u, curve_params)
if f == 1:
return
if veb:
print('Found factor:', f)
print('Mainloop call was:', n, u, curve_params)
if isprime(f):
congrats(f, veb)
yield f
n = n//f
if isprime(n):
yield n
if veb:
print('(factor processed)')
return
for factor in sub_sure_factors(f, u, curve_params):
if isprime(factor):
congrats(f, veb)
yield factor
else:
if veb:
print('entering new ecm loop to deal with stubborn factor:', factor)
for factor_of_factor in ecm(factor, True, ov, veb, tdb, pr):
yield factor_of_factor
n = n//factor
if isprime(n):
yield n
if veb:
print('(factor processed)')
return
def to_tuple(p):
'''Converts a list of two-element lists into a list of two-element tuples.
Returns a list.'''
answer = []
for i in p:
answer.append((i[0], i[1]))
return tuple(answer)
def mainloop(n, u, p1):
''' Input: n -- an integer to (try) to factor.
u -- the phase 1 smoothness bound
p1 -- a list of sigma parameters to try
Output: A factor of n. (1 is returned on faliure).
Notes:
1. Other parameters, such as the phase 2 smoothness bound are selected by the mainloop function.
2. This function uses batch algorithms, so if p1 is not long enough, there will be a loss in efficiency.
3. Of course, if p1 is too long, then the mainloop will have to use more memory.
[The memory is polynomial in the length of p1, log u, and log n].'''
k = inv_const(n)
log_u = math.log(u)
log_log_u = math.log(log_u)
log_n = math.log(n)
u2 = int(_7_OVER_LOG_2 * u * log_u / log_log_u)
ncurves = len(p1)
w = int(math.sqrt(_3_OVER_LOG_2 * ncurves / k) - 0.5)
number_of_primes = int((ncurves << w) * math.sqrt(LOG_4_OVER_9 * log_n / k) / log_u) # Lagrange multipliers!
number_of_primes = min(number_of_primes, int((log_n / math.log(log_n))**2 * ncurves / log_u), int(u / log_u))
number_of_primes = max(number_of_primes, 1)
m = math.log(number_of_primes) + log_log_u
w = min(w, int((m - 2 * math.log(m) + LOG_3_MINUS_LOG_LOG_2) / LOG_2))
w = max(w, 1)
max_order = n + sqrt(n << 2) + 1 # By Hasse's theorem.
det_bound = ((1 << w) - 1 + ((w & 1) << 1)) // 3
log_mo = math.log(max_order)
p = list(range(number_of_primes))
prime = mpz(2)
p1 = get_points(p1, n)
if not isinstance(p1, list):
return p1
for _ in range(int(log_mo / LOG_2)):
p1 = double(p1, n)
if not isinstance(p1, list):
return p1
for i in range(1, det_bound):
prime = (i << 1) + 1
if isprime(prime):
for _ in range(int(log_mo / math.log(prime))):
p1 = multiply(p1, prime, n)
if not isinstance(p1, list):
return p1
while prime < sqrt(u) and isinstance(p1, list):
for i in range(number_of_primes):
prime = next_prime(prime)
p[i] = prime ** max(1, int(log_u / math.log(prime)))
p1 = fast_multiply(p1, prod(p), n, w)
if not isinstance(p1, list):
return p1
while prime < u and isinstance(p1, list):
for i in range(number_of_primes):
prime = next_prime(prime)
p[i] = prime
p1 = fast_multiply(p1, prod(p), n, w)
if not isinstance(p1, list):
return p1
del p
small_jump = int(greatest_n((1 << (w + 2)) // 3))
small_jump = max(120, small_jump)
big_jump = 1 + (int(sqrt((5 << w) // 21)) << 1)
total_jump = small_jump * big_jump
big_multiple = max(total_jump << 1, ((int(next_prime(prime)) - (total_jump >> 1)) / total_jump) * total_jump)
big_jump_2 = big_jump >> 1
small_jump_2 = small_jump >> 1
product = ONE
psmall_jump = multiply(p1, small_jump, n)
if not isinstance(psmall_jump, list):
return psmall_jump
ptotal_jump = multiply(psmall_jump, big_jump, n)
if not isinstance(ptotal_jump, list):
return ptotal_jump
pgiant_step = multiply(p1, big_multiple, n)
if not isinstance(pgiant_step, list):
return pgiant_step
small_multiples = [None]
for i in range(1, small_jump >> 1):
if gcd(i, small_jump) == 1:
tmp = multiply(p1, i, n)
if not isinstance(tmp, list):
return tmp
for i in range(len(tmp)):
tmp[i] = tmp[i][0]
small_multiples.append(tuple(tmp))
else:
small_multiples.append(None)
small_multiples = tuple(small_multiples)
big_multiples = [None]
for i in range(1, (big_jump + 1) >> 1):
tmp = multiply(psmall_jump, i, n)
if not isinstance(tmp, list):
return tmp
big_multiples.append(to_tuple(tmp))
big_multiples = tuple(big_multiples)
psmall_jump = to_tuple(psmall_jump)
ptotal_jump = to_tuple(ptotal_jump)
while big_multiple < u2:
big_multiple += total_jump
center_up = big_multiple
center_down = big_multiple
pgiant_step = add(ptotal_jump, pgiant_step, n)
if not isinstance(pgiant_step, list):
return pgiant_step
prime_up = next_prime(big_multiple - small_jump_2)
while prime_up < big_multiple + small_jump_2:
s = small_multiples[abs(int(prime_up) - big_multiple)]
for j in range(ncurves):
product *= pgiant_step[j][0] - s[j]
product %= n
prime_up = next_prime(prime_up)
for i in range(1, big_jump_2 + 1):
center_up += small_jump
center_down -= small_jump
pmed_step_up, pmed_step_down = add_sub_x_only(big_multiples[i], pgiant_step, n)
if pmed_step_down == None:
return pmed_step_up
while prime_up < center_up + small_jump_2:
s = small_multiples[abs(int(prime_up) - center_up)]
for j in range(ncurves):
product *= pmed_step_up[j] - s[j]
product %= n
prime_up = next_prime(prime_up)
prime_down = next_prime(center_down - small_jump_2)
while prime_down < center_down + small_jump_2:
s = small_multiples[abs(int(prime_down) - center_down)]
for j in range(ncurves):
product *= pmed_step_down[j] - s[j]
product %= n
prime_down = next_prime(prime_down)
if gcd(product, n) != 1:
return gcd(product, n)
return 1
def fast_multiply(p, d, n, w):
'''Multiplies each element of p by d. Multiplication is on
an elliptic curve. Both d and <p> must be odd. Also, <p> may not be divisible by anything less than or equal to 2 * (2**w + (-1)**w) / 3 + 1.
Returns the list p multiplied by d.'''
mask = (1 << (w << 1)) - 1
flop = mask // 3
g = naf(d) >> 4
precomp = {}
m = copy(p)
p = double(p, n)
for i in range((flop >> w) + (w & 1)):
key = naf((i << 1) + 1)
precomp[key] = to_tuple(m)
precomp[((key & flop) << 1) ^ key] = precomp[key]
m = add(p, m, n)
while g > 0:
if g & 1:
t = g & mask
sh = 1 + int(math.log(t) / LOG_4)
for _ in range(sh):
p = double(p, n)
if g & 2:
p = subtract(precomp[t], p, n)
else:
p = add(precomp[t], p, n)
g >>= (sh << 1)
if not isinstance(p, list):
return p
else:
p = double(p, n)
g >>= 2
return p
def get_points(p1, n):
'''Outputs points in Weierstrass form, given input in Suyama
parametrization.
Returns the points.'''
p1 = list(p1)
invs = p1[:]
ncurves = len(p1)
for j in range(ncurves):
sigma = mpz(p1[j])
u = (sigma**2 - 5) % n
v = sigma << 2
i = (((u * u) % n) * ((v * u << 2) % n)) % n
p1[j] = [u, v, i]
invs[j] = (i * v) % n
invs = parallel_invert(invs, n)
if not isinstance(invs, list):
return invs
for j in range(ncurves):
u, v, i = p1[j]
inv = invs[j]
a = (((((((v - u)**3 % n) * v) % n) * (u + u + u + v)) % n) * inv - 2) % n # <-- This line is a thing of beauty
x_0 = (((((u * i) % n) * inv) % n) ** 3) % n # And this one gets second place
b = ((((x_0 + a) * x_0 + 1) % n) * x_0) % n
x_0 = (b * x_0) % n
y_0 = (b**2) % n
while a % 3:
a += n
x_0 = (x_0 + a * b // 3) % n
c = (y_0 * ((1 - a**2 // 3) % n)) % n
p1[j] = [x_0, y_0, c]
return p1
def isprime(n):
''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits.
Returns the primality of n (True or False).'''
if not fastprime(n):
return False
elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME:
return True
do_loop = False
j = 1
d = n >> 1
a = 2
bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1
while not d & 1:
d >>= 1
j += 1
while a < bound:
a = next_prime(a)
p = atdn(a, d, n)
if p == 1 or p == n - 1:
continue
for _ in range(j):
p = (p * p) % n
if p == 1:
return False
elif p == n - 1:
do_loop = True
break
if do_loop:
do_loop = False
continue
return False
return True
def multiply(p1, d, n):
'''Multiplies each element of a list by a number, without using too much overhead.
Returns a list p multiplied through by d.'''
pos = int(math.log(d) / LOG_2) - 1
p = copy(p1)
while pos >= 0:
p = double(p, n)
if not isinstance(p, list):
return p
if (d >> pos) & 1:
p = add(p1, p, n)
if not isinstance(p, list):
return p
pos -= 1
return p
def ecm(n, ra, ov, veb, tdb, pr): # DOCUMENTATION
'''Input:
n -- An integer to factor
veb -- If True, be verbose
ra -- If True, select sigma values randomly
ov -- How asymptotically fast the calculation is
pr -- What portion of the total processing power this run gets
Output: Factors of n, via a generator.
Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''
if veb:
looking_for = 0
k = inv_const(n)
if ra:
sigma = 6 + random.randrange(BILLION)
else:
sigma = 6
for factor in sure_factors(n, k, list(range(sigma, sigma + k)), veb, ra, ov, tdb, pr):
yield factor
n = n//factor
if n == 1:
return
if ra:
sigma += k + random.randrange(BILLION)
else:
sigma += k
x_max = 0.5 * math.log(n) / math.log(k)
t = rho_ts(int(x_max))
prime_probs = []
nc = 1 + int(_12_LOG_2_OVER_49 * ov * ov * k)
eff_nc = nc / pr
for i in range(1 + (int(math.log(n)) >> 1)):
if i < math.log(tdb):
prime_probs.append(0)
else:
prime_probs.append(1.0/i)
for i in range(len(prime_probs)):
p_success = rho_ev((i - 2.65) / math.log(k), t)
p_fail = max(0, (1 - p_success * math.log(math.log(k)))) ** (k / pr)
prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])
while n != 1:
low = int(k)
high = n
while high > low + 1:
u = (high + low) >> 1
sum = 0
log_u = math.log(u)
for i in range(len(prime_probs)):
log_p = i - 2.65
log_u = math.log(u)
quot = log_p / log_u
sum += prime_probs[i] * (rho_ev(quot - 1, t) - rho_ev(quot, t) * log_u)
if sum < 0:
high = u
else:
low = u
if ra:
sigma += nc + random.randrange(BILLION)
else:
sigma += nc
for factor in sure_factors(n, u, list(range(sigma, sigma + nc)), veb, ra, ov, tdb, pr):
yield factor
n = n // factor
for i in range(len(prime_probs)):
p_success = rho_ev((i - 2.65) / math.log(u), t)
p_fail = max(0, (1 - p_success * math.log(math.log(u)))) ** eff_nc
prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])
prime_probs = prime_probs[:1 + (int(math.log(n)) >> 1)]
if veb and n != 1:
m = max(prime_probs)
for i in range(len(prime_probs)):
if prime_probs[i] == m:
break
new_looking_for = (int(i / _5_LOG_10) + 1)
new_looking_for += new_looking_for << 2
if new_looking_for != looking_for:
looking_for = new_looking_for
print('Searching for primes around', looking_for, 'digits')
return
def factors(n, veb, ra, ov, pr):
'''Generates factors of n.
Strips small primes, then feeds to ecm function.
Input:
n -- An integer to factor
veb -- If True, be verbose
ra -- If True, select sigma values randomly
ov -- How asymptotically fast the calculation is
pr -- What portion of the total processing power this run gets
Output: Factors of n, via a generator.
Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''
if type(n) not in T:
raise ValueError('Number given must be integer or long.')
if not 0 < pr <= 1:
yield 'Error: pr must be between 0 and 1'
return
while not n & 1:
n >>= 1
yield 2
n = mpz(n)
k = inv_const(n)
prime = 2
trial_division_bound = max(10 * k**2, 100)
while prime < trial_division_bound:
prime = next_prime(prime)
while not n % prime:
n = n//prime
yield prime
if isprime(n):
yield n
return
if n == 1:
return
for factor in ecm(n, ra, ov, veb, trial_division_bound, pr):
yield factor
### End of algorithm code; beginning of interface code ##
def is_switch(s):
'''Tests whether the input string is a switch (e.g. "-v" or "--help").
Returns True or False.'''
for i in range(len(s)):
if s[i] != '-':
break
if i == 0: # s not begin with "-"
return False
for char in s[i:]:
if not char.isalpha():
if char == '=': # Switches like "--portion=" are acceptable
return True
else:
return False
return True
def parse_switch(s, switch):
'''Parses a switch in the form '--string=num' and returns num or calls help() if the string is invalid.
Returns the num in '--string=num'.'''
try:
return float(s[len(switch) + 3:])
except ValueError:
help()
def valid_input(s):
'''Tests the input string for validity as a mathematical expressions.
Returns True or False.'''
valid = ('(', ')', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '^', ' ', '\t')
for char in s:
if char not in valid:
return False
return True
def help():
print( '''\
Usage: pyecm [OPTION] [expression to factor]
Factor numbers using the Elliptic Curve Method.
--portion=num Does only part of the work for factoring, corresponding to
what fraction of the total work the machine is doing. Useful for working in
parallel. For example, if there are three machines: 1GHz, 1GHz, and 2GHz, print
should be set to 0.25 for the 1GHz machines and 0.5 for the 2GHz machine.
Implies -r and -v. -r is needed to avoid duplicating work and -v is needed to
report results.
--ov=num Sets the value of the internal parameter ov, which
determines the trade-off between memory and time usage. Do not touch if you do
not know what you are doing. Please read all the documentation and understand
the full implications of the parameter before using this switch.
-n, --noverbose Terse. On by default. Needed to cancel the -v from the
--portion or --random switches. If both -n and -v are specified, the one
specified last takes precedence.
-r, --random Chooses random values for sigma, an internal parameter in
the calculation. Implies -v; if you're doing something random, you want to know
what's happening.
-v, --verbose Explains what is being done with intermediate calculations
and results.
With no integers to factor given via command-line, read standard input.
Please report bugs to Eric Larson <[email protected]>.''')
sys.exit()
def command_line(veb, ra, ov, pr):
l = len(sys.argv)
for i in range(1, l):
if not is_switch(sys.argv[i]):
break
for j in range(i, l): # Start with the first non-switch
if j != i: # Pretty printing
print( '')
response = sys.argv[j]
if valid_input(response):
response = response.replace('^', '**')
try:
n = eval(response)
int(n)
except (SyntaxError, TypeError, ValueError):
help()
else:
help()
print('Factoring {0}:'.format(n))
if n < 0:
print(-1)
n = -n
if n == 0:
print( '0 does not have a well-defined factorization.')
continue
elif n == 1:
print( 1)
continue
if ov == DUMMY:
ov = 2*math.log(math.log(n))
for factor in factors(n, veb, ra, ov, pr):
print(factor)
def interactive(veb, ra, ov, pr, n):
user_input = n
while user_input != 'exit' and user_input != 'quit':
if valid_input(user_input):
user_input = user_input.replace('^', '**')
try:
n = eval(user_input)
int(n)
except (SyntaxError, TypeError, ValueError):
help()
else:
help()
print('Factoring number %d:' % n)
if n < 0:
print( -1)
n = -n
if n == 0:
print('0 does not have a well-defined factorization.')
print()
user_input = input()
continue
elif n == 1:
print(1)
print()
user_input = input()
continue
if ov == DUMMY:
ov = 2*math.log(math.log(n))
ret_factors = []
for factor in factors(n, veb, ra, ov, pr):
ret_factors.append(factor)
return ret_factors
def defactor(n):
pr = 1.0
ov = DUMMY
return interactive(False, False, ov, pr, str(n))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment