Created
July 27, 2020 18:51
-
-
Save valkheim/4877dabc412befd0dc313e431abcdbec to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
==> main.py <== | |
import math | |
from Crypto.Hash import SHA256 | |
from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes, inverse, isPrime | |
import pyecm | |
def phi(p, q): | |
" Euler totient " | |
return (p - 1) * (q - 1) | |
def modular_multiplicative_inverse(e, p, q): | |
""" modinv a is x such that ax cong 1 mod m) | |
=> ax cong 1 mod m | |
=> ax -1 = (-y)m | |
=> ax + my = egcd(a,m) = 1 (bezout identity) | |
""" | |
n = phi(p, q) | |
def egcd(a, b): | |
""" m, x, y = egcd(a, b) """ | |
if a == 0: | |
return (b, 0, 1) | |
m, y, x, = egcd(b % a, a) | |
return m, x - (b // a) * y, y | |
def modinv(e, phi): | |
""" retrieve private key given e and totient """ | |
""" aka cryptodome inverse(e, phi) """ | |
m, bezout_x, bezout_y = egcd(e, phi) | |
return bezout_x % phi | |
def encrypt(clear, e, n): | |
return pow(clear, e, n) | |
def decrypt(encrypted, d, n): | |
return pow(encrypted, d, n) | |
def sign(message: str, hash_technique: str, private_key: int, n: int): | |
if hash_technique == "sha256": | |
hasher = SHA256.new() | |
assert hasher is not None | |
hasher.update(bytes(m.encode())) | |
H = int(hasher.hexdigest(), 16) | |
return encrypt(H, private_key, n) | |
def decompose(n): | |
return pyecm.defactor(n) | |
==> pyecm.py <== | |
#!/usr/bin/python3 | |
''' | |
You should install psyco and gmpy if you want maximal speed. | |
Filename: pyecm | |
Authors: Eric Larson <[email protected]>, Martin Kelly <[email protected]>, Matt Ford <[email protected]> | |
License: GNU GPL (see <http://www.gnu.org/licenses/gpl.html> for more information. | |
Description: Factors a number using the Elliptic Curve Method, a fast algorithm for numbers < 50 digits. | |
We are using curves in Suyama's parametrization, but points are in affine coordinates, and the curve is in Wierstrass form. | |
The idea is to do many curves in parallel to take advantage of batch inversion algorithms. This gives asymptotically 7 modular multiplications per bit. | |
WARNING: pyecm is NOT a general-purpose number theory or elliptic curve library. Many of the functions have confusing calling syntax, and some will rather unforgivingly crash or return bad output if the input is not formatted exactly correctly. That said, there are a couple of functions that you CAN safely import into another program. These are: factors, isprime. However, be sure to read the documentation for each function that you use. | |
''' | |
import math | |
import sys | |
import random | |
try: | |
import psyco | |
psyco.full() | |
PSYCO_EXISTS = True | |
except ImportError: | |
PSYCO_EXISTS = False | |
try: # Try to use gmpy | |
from gmpy2 import isqrt as sqrt | |
from gmpy2 import iroot as root | |
from gmpy2 import gcd, invert, mpz, next_prime | |
import gmpy2 | |
GMPY_EXISTS = True | |
except ImportError: | |
try: | |
from gmpy import gcd, invert, mpz, next_prime, sqrt, root | |
GMPY_EXISTS = True | |
except ImportError: | |
GMPY_EXISTS = False | |
if not GMPY_EXISTS: | |
PRIMES = (5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 167) | |
GMPY_EXISTS = False | |
def gcd(a, b): | |
'''Computes the Greatest Common Divisor of a and b using the standard quadratic time improvement to the Euclidean Algorithm. | |
Returns the GCD of a and b.''' | |
if b == 0: | |
return a | |
elif a == 0: | |
return b | |
count = 0 | |
if a < 0: | |
a = -a | |
if b < 0: | |
b = -b | |
while not ((a & 1) | (b & 1)): | |
count += 1 | |
a >>= 1 | |
b >>= 1 | |
while not a & 1: | |
a >>= 1 | |
while not b & 1: | |
b >>= 1 | |
if b > a: | |
b,a = a,b | |
while b != 0 and a != b: | |
a -= b | |
while not (a & 1): | |
a >>= 1 | |
if b > a: | |
b, a = a, b | |
return a << count | |
def invert(a, b): | |
'''Computes the inverse of a modulo b. b must be odd. | |
Returns the inverse of a (mod b).''' | |
if a == 0 or b == 0: | |
return 0 | |
truth = False | |
if a < 0: | |
truth = True | |
a = -a | |
b_orig = b | |
alpha = 1 | |
beta = 0 | |
while not a & 1: | |
if alpha & 1: | |
alpha += b_orig | |
alpha >>= 1 | |
a >>= 1 | |
if b > a: | |
a, b = b, a | |
alpha, beta = beta, alpha | |
while b != 0 and a != b: | |
a -= b | |
alpha -= beta | |
while not a & 1: | |
if alpha & 1: | |
alpha += b_orig | |
alpha >>= 1 | |
a >>= 1 | |
if b > a: | |
a,b = b,a | |
alpha, beta = beta, alpha | |
if a == b: | |
a -= b | |
alpha -= beta | |
a, b = b, a | |
alpha, beta = beta, alpha | |
if a != 1: | |
return 0 | |
if truth: | |
alpha = b_orig - alpha | |
return alpha | |
def next_prime(n): | |
'''Finds the next prime after n. | |
Returns the next prime after n.''' | |
n += 1 | |
if n <= 167: | |
if n <= 23: | |
if n <= 3: | |
return 3 - (n <= 2) | |
n += (n & 1) ^ 1 | |
return n + (((4 - (n % 3)) >> 1) & 2) | |
n += (n & 1) ^ 1 | |
inc = n % 3 | |
n += ((4 - inc) >> 1) & 2 | |
inc = 6 - ((inc + ((2 - inc) & 2)) << 1) | |
while 0 in (n % 5, n % 7, n % 11): | |
n += inc | |
inc = 6 - inc | |
return n | |
n += (n & 1) ^ 1 | |
inc = n % 3 | |
n += ((4 - inc) >> 1) & 2 | |
inc = 6 - ((inc + ((2 - inc) & 2)) << 1) | |
should_break = False | |
while 1: | |
for prime in PRIMES: | |
if not n % prime: | |
should_break = True | |
break | |
if should_break: | |
should_break = False | |
n += inc | |
inc = 6 - inc | |
continue | |
p = 1 | |
for i in range(int(math.log(n) / LOG_2), 0, -1): | |
p <<= (n >> i) & 1 | |
p = (p * p) % n | |
if p == 1: | |
return n | |
n += inc | |
inc = 6 - inc | |
def mpz(n): | |
'''A dummy function to ensure compatibility with those that do not have gmpy. | |
Returns n.''' | |
return n | |
def root(n, k): | |
'''Finds the floor of the kth root of n. This is a duplicate of gmpy's root function. | |
Returns a tuple. The first item is the floor of the kth root of n. The second is 1 if the root is exact (as in, sqrt(16)) and 0 if it is not.''' | |
low = 0 | |
high = n + 1 | |
while high > low + 1: | |
mid = (low + high) >> 1 | |
mr = mid**k | |
if mr == n: | |
return (mid, 1) | |
if mr < n: | |
low = mid | |
if mr > n: | |
high = mid | |
return (low, 0) | |
def sqrt(n): | |
return root(n, 2)[0] | |
# We're done importing. Now for some constants. | |
if GMPY_EXISTS: | |
INV_C = 1.4 | |
else: | |
if PSYCO_EXISTS: | |
INV_C = 7.3 | |
else: | |
INV_C = 13.0 | |
LOG_2 = math.log(2) | |
LOG_4 = math.log(4) | |
LOG_3_MINUS_LOG_LOG_2 = math.log(3) - math.log(LOG_2) | |
LOG_4_OVER_9 = LOG_4 / 9 | |
_3_OVER_LOG_2 = 3 / LOG_2 | |
_5_LOG_10 = 5 * math.log(10) | |
_7_OVER_LOG_2 = 7 / LOG_2 | |
BIG = 2.0**512 | |
BILLION = 10**9 # Something big that fits into an int. | |
MULT = math.log(3) / LOG_2 | |
ONE = mpz(1) | |
SMALL = 2.0**(-30) | |
SMALLEST_COUNTEREXAMPLE_FASTPRIME = 2047 | |
T = (type(mpz(1)), type(1), type(1)) | |
DUMMY = 'dummy' # Dummy value throughout the program | |
VERSION = '2.0.3 (Python 3)' | |
_12_LOG_2_OVER_49 = 12 * math.log(2) / 49 | |
RECORD = 1162795072109807846655696105569042240239 | |
class ts: | |
'''Does basic manipulations with Taylor Series (centered at 0). An example call to ts: | |
a = ts(7, 23, [1<<23, 2<<23, 3<<23]) -- now, a represents 1 + 2x + 3x^2. Here, computations will be done to degree 7, with accuracy 2^(-23). Input coefficients must be integers.''' | |
def __init__(self, degree, acc, p): | |
self.acc = acc | |
self.coefficients = p[:degree + 1] | |
while len(self.coefficients) <= degree: | |
self.coefficients.append(0) | |
def add(self, a, b): | |
'''Adds a and b''' | |
b_ = b.coefficients[:] | |
a_ = a.coefficients[:] | |
self.coefficients = [] | |
while len(b_) > len(a_): | |
a_.append(0) | |
while len(b_) < len(a_): | |
b_.append(0) | |
for i in range(len(a_)): | |
self.coefficients.append(a_[i] + b_[i]) | |
self.acc = a.acc | |
def ev(self, x): | |
'''Returns a(x)''' | |
answer = 0 | |
for i in range(len(self.coefficients) - 1, -1, -1): | |
answer *= x | |
answer += self.coefficients[i] | |
return answer | |
def evh(self): | |
'''Returns a(1/2)''' | |
answer = 0 | |
for i in range(len(self.coefficients) - 1, -1, -1): | |
answer >>= 1 | |
answer += self.coefficients[i] | |
return answer | |
def evmh(self): | |
'''Returns a(-1/2)''' | |
answer = 0 | |
for i in range(len(self.coefficients) - 1, -1, -1): | |
answer = - answer >> 1 | |
answer += self.coefficients[i] | |
return answer | |
def int(self): | |
'''Replaces a by an integral of a''' | |
self.coefficients = [0] + self.coefficients | |
for i in range(1, len(self.coefficients)): | |
self.coefficients[i] = self.coefficients[i] // i | |
def lindiv(self, a): | |
'''a.lindiv(k) -- sets a/(x-k/2) for integer k''' | |
for i in range(len(self.coefficients) - 1): | |
self.coefficients[i] <<= 1 | |
self.coefficients[i] = self.coefficients[i] // a | |
self.coefficients[i + 1] -= self.coefficients[i] | |
self.coefficients[-1] <<= 1 | |
self.coefficients[-1] = self.coefficients[-1] // a | |
def neg(self): | |
'''Sets a to -a''' | |
for i in range(len(self.coefficients)): | |
self.coefficients[i] = - self.coefficients[i] | |
def set(self, a): | |
'''a.set(b) sets a to b''' | |
self.coefficients = a.coefficients[:] | |
self.acc = a.acc | |
def simp(self): | |
'''Turns a into a type of Taylor series that can be fed into ev, but cannot be computed with further.''' | |
for i in range(len(self.coefficients)): | |
shift = max(0, int(math.log(abs(self.coefficients[i]) + 1) / LOG_2) - 1000) | |
self.coefficients[i] = float(self.coefficients[i] >> shift) | |
shift = self.acc - shift | |
for _ in range(shift >> 9): | |
self.coefficients[i] /= BIG | |
self.coefficients[i] /= 2.0**(shift & 511) | |
if (abs(self.coefficients[i] / self.coefficients[0]) <= SMALL): | |
self.coefficients = self.coefficients[:i] | |
break | |
# Functions are declared in alphabetical order except when dependencies force them to be at the end. | |
def add(p1, p2, n): | |
'''Adds first argument to second (second argument is not preserved). The arguments are points on an elliptic curve. The first argument may be a tuple instead of a list. The addition is thus done pointwise. This function has bizzare input/output because there are fast algorithms for inverting a bunch of numbers at once. | |
Returns a list of the addition results.''' | |
inv = list(range(len(p1))) | |
for i in range(len(p1)): | |
inv[i] = p1[i][0] - p2[i][0] | |
inv = parallel_invert(inv, n) | |
if not isinstance(inv, list): | |
return inv | |
for i in range(len(p1)): | |
m = ((p1[i][1] - p2[i][1]) * inv[i]) % n | |
p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n | |
p2[i][1] = (m * (p1[i][0] - p2[i][0]) - p1[i][1]) % n | |
return p2 | |
def add_sub_x_only(p1, p2, n): | |
'''Given a pair of lists of points p1 and p2, computes the x-coordinates of | |
p1[i] + p2[i] and p1[i] - p2[i] for each i. | |
Returns two lists, the first being the sums and the second the differences.''' | |
sums = list(range(len(p1))) | |
difs = list(range(len(p1))) | |
for i in range(len(p1)): | |
sums[i] = p2[i][0] - p1[i][0] | |
sums = parallel_invert(sums, n) | |
if not isinstance(sums, list): | |
return (sums, None) | |
for i in range(len(p1)): | |
ms = ((p2[i][1] - p1[i][1]) * sums[i]) % n | |
md = ((p2[i][1] + p1[i][1]) * sums[i]) % n | |
sums[i] = (ms * ms - p1[i][0] - p2[i][0]) % n | |
difs[i] = (md * md - p1[i][0] - p2[i][0]) % n | |
sums = tuple(sums) | |
difs = tuple(difs) | |
return (sums, difs) | |
def atdn(a, d, n): | |
'''Calculates a to the dth power modulo n. | |
Returns the calculation's result.''' | |
x = 1 | |
pos = int(math.log(d) / LOG_2) | |
while pos >= 0: | |
x = (x * x) % n | |
if (d >> pos) & 1: | |
x *= a | |
pos -= 1 | |
return x % n | |
def copy(p): | |
'''Copies a list using only deep copies. | |
Returns a copy of p.''' | |
answer = [] | |
for i in p: | |
answer.append(i[:]) | |
return answer | |
def could_be_prime(n): | |
'''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits. | |
Returns whether it is possible for n to be prime (True or False). | |
''' | |
if n < 2: | |
return False | |
if n == 2: | |
return True | |
if not int(n) & 1: | |
return False | |
product = ONE | |
log_n = int(math.log(n)) + 1 | |
bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1 | |
if bound * log_n >= n: | |
bound = 1 | |
log_n = int(sqrt(n)) | |
prime_bound = 0 | |
prime = 3 | |
for _ in range(bound): | |
p = [] | |
prime_bound += log_n | |
while prime <= prime_bound: | |
p.append(prime) | |
prime = next_prime(prime) | |
if p != []: | |
p = prod(p) | |
product = (product * p) % n | |
return gcd(n, product) == 1 | |
def double(p, n): | |
'''Doubles each point in the input list. Much like the add function, we take advantage of fast inversion. | |
Returns the doubled list.''' | |
inv = list(range(len(p))) | |
for i in range(len(p)): | |
inv[i] = p[i][1] << 1 | |
inv = parallel_invert(inv, n) | |
if not isinstance(inv, list): | |
return inv | |
for i in range(len(p)): | |
x = p[i][0] | |
m = (x * x) % n | |
m = ((m + m + m + p[i][2]) * inv[i]) % n | |
p[i][0] = (m * m - x - x) % n | |
p[i][1] = (m * (x - p[i][0]) - p[i][1]) % n | |
return p | |
def fastprime(n): | |
'''Tests for primality of n using an algorithm that is very fast, O(N**3 / log(N)) (assuming quadratic multiplication) where n has N digits, but ocasionally inaccurate for n >= 2047. | |
Returns the primality of n (True or False).''' | |
if not could_be_prime(n): | |
return False | |
if n == 2: | |
return True | |
j = 1 | |
d = n >> 1 | |
while not d & 1: | |
d >>= 1 | |
j += 1 | |
p = 1 | |
pos = int(math.log(d) / LOG_2) | |
while pos >= 0: | |
p = (p * p) % n | |
p <<= (d >> pos) & 1 | |
pos -= 1 | |
if p in (n - 1, n + 1): | |
return True | |
for _ in range(j): | |
p = (p * p) % n | |
if p == 1: | |
return False | |
elif p == n - 1: | |
return True | |
return False | |
def greatest_n(phi_max): | |
'''Finds the greatest n such that phi(n) < phi_max. | |
Returns the greatest n such that phi(n) < phi_max.''' | |
phi_product = 1 | |
product = 1 | |
prime = 1 | |
while phi_product <= phi_max: | |
prime = next_prime(prime) | |
phi_product *= prime - 1 | |
product *= prime | |
n_max = (phi_max * product) // phi_product | |
phi_values = list(range(n_max)) | |
prime = 2 | |
while prime <= n_max: | |
for i in range(0, n_max, prime): | |
phi_values[i] -= phi_values[i] // prime | |
prime = next_prime(prime) | |
for i in range(n_max - 1, 0, -1): | |
if phi_values[i] <= phi_max: | |
return i | |
def inv_const(n): | |
'''Finds a constant relating the complexity of multiplication to that of modular inversion. | |
Returns the constant for a given n.''' | |
return int(INV_C * math.log(n)**0.42) | |
def naf(d): | |
'''Finds a number's non-adjacent form, reverses the bits, replaces the | |
-1's with 3's, and interprets the result base 4. | |
Returns the result interpreted as if in base 4.''' | |
g = 0 | |
while d: | |
g <<= 2 | |
g ^= ((d & 2) & (d << 1)) ^ (d & 1) | |
d += (d & 2) >> 1 | |
d >>= 1 | |
return g | |
def parallel_invert(l, n): | |
'''Inverts all elements of a list modulo some number, using 3(n-1) modular multiplications and one inversion. | |
Returns the list with all elements inverted modulo 3(n-1).''' | |
l_ = l[:] | |
for i in range(len(l)-1): | |
l[i+1] = (l[i] * l[i+1]) % n | |
try: | |
inv = invert(l[-1], n) | |
except ZeroDivisionError: | |
inv = 0 | |
if inv == 0: | |
return gcd(l[-1], n) | |
for i in range(len(l)-1, 0, -1): | |
l[i] = (inv * l[i-1]) % n | |
inv = (inv * l_[i]) % n | |
l[0] = inv | |
return l | |
def prod(p): | |
'''Multiplies all elements of a list together. The order in which the | |
elements are multiplied is chosen to take advantage of Python's Karatsuba | |
Multiplication | |
Returns the product of everything in p.''' | |
jump = 1 | |
while jump < len(p): | |
for i in range(0, len(p) - jump, jump << 1): | |
p[i] *= p[i + jump] | |
p[i + jump] = None | |
jump <<= 1 | |
return p[0] | |
def rho_ev(x, ts): | |
'''Evaluates Dickman's rho function, which calculates the asymptotic | |
probability as N approaches infinity (for a given x) that all of N's factors | |
are bounded by N^(1/x).''' | |
return ts[int(x)].ev(x - int(x) - 0.5) | |
def rho_ts(n): | |
'''Makes a list of Taylor series for the rho function centered at 0.5, 1.5, 2.5 ... n + 0.5. The reason this is necessary is that the radius of convergence of rho is small, so we need lots of Taylor series centered at different places to correctly evaluate it. | |
Returns a list of Taylor series.''' | |
f = ts(10, 10, []) | |
answer = [ts(10, 10, [1])] | |
for _ in range(n): | |
answer.append(ts(10, 10, [1])) | |
deg = 5 | |
acc = 50 + n * int(1 + math.log(1 + n) + math.log(math.log(3 + n))) | |
r = 1 | |
rho_series = ts(1, 10, [0]) | |
while r != rho_series.coefficients[0]: | |
deg = (deg + (deg << 2)) // 3 | |
r = rho_series.coefficients[0] | |
rho_series = ts(deg, acc, [(1) << acc]) | |
center = 0.5 | |
for i in range(1, n+1): | |
f.set(rho_series) | |
center += 1 | |
f.lindiv(int(2*center)) | |
f.int() | |
f.neg() | |
d = ts(deg, acc, [rho_series.evh() - f.evmh()]) | |
f.add(f, d) | |
rho_series.set(f) | |
f.simp() | |
answer[i].set(f) | |
rho_series.simp() | |
return answer | |
def sub_sub_sure_factors(f, u, curve_parameter): | |
'''Finds all factors that can be found using ECM with a smoothness bound of u and sigma and give curve parameters. If that fails, checks for being a prime power and does Fermat factoring as well. | |
Yields factors.''' | |
while not (f & 1): | |
yield 2 | |
f >>= 1 | |
while not (f % 3): | |
yield 3 | |
f = f // 3 | |
if isprime(f): | |
yield f | |
return | |
log_u = math.log(u) | |
u2 = int(_7_OVER_LOG_2 * u * log_u / math.log(log_u)) | |
primes = [] | |
still_a_chance = True | |
log_mo = math.log(f + 1 + sqrt(f << 2)) | |
g = gcd(curve_parameter, f) | |
if g not in (1, f): | |
for factor in sub_sub_sure_factors(g, u, curve_parameter): | |
yield factor | |
for factor in sub_sub_sure_factors(f//g, u, curve_parameter): | |
yield factor | |
return | |
g2 = gcd(curve_parameter**2 - 5, f) | |
if g2 not in (1, f): | |
for factor in sub_sub_sure_factors(g2, u, curve_parameter): | |
yield factor | |
for factor in sub_sub_sure_factors(f // g2, u, curve_parameter): | |
yield factor | |
return | |
if f in (g, g2): | |
yield f | |
while still_a_chance: | |
p1 = get_points([curve_parameter], f) | |
for prime in primes: | |
p1 = multiply(p1, prime, f) | |
if not isinstance(p1, list): | |
if p1 != f: | |
for factor in sub_sub_sure_factors(p1, u, curve_parameter): | |
yield factor | |
for factor in sub_sub_sure_factors(f//p1, u, curve_parameter): | |
yield factor | |
return | |
else: | |
still_a_chance = False | |
break | |
if not still_a_chance: | |
break | |
prime = 1 | |
still_a_chance = False | |
while prime < u2: | |
prime = next_prime(prime) | |
should_break = False | |
for _ in range(int(log_mo / math.log(prime))): | |
p1 = multiply(p1, prime, f) | |
if not isinstance(p1, list): | |
if p1 != f: | |
for factor in sub_sub_sure_factors(p1, u, curve_parameter): | |
yield factor | |
for factor in sub_sub_sure_factors(f//p1, u, curve_parameter): | |
yield factor | |
return | |
else: | |
still_a_chance = True | |
primes.append(prime) | |
should_break = True | |
break | |
if should_break: | |
break | |
for i in range(2, int(math.log(f) / LOG_2) + 2): | |
r = root(f, i) | |
if r[1]: | |
for factor in sub_sub_sure_factors(r[0], u, curve_parameter): | |
for _ in range(i): | |
yield factor | |
return | |
a = 1 + sqrt(f) | |
bsq = a * a - f | |
iter = 0 | |
while bsq != sqrt(bsq)**2 and iter < 3: | |
a += 1 | |
iter += 1 | |
bsq += a + a - 1 | |
if bsq == sqrt(bsq)**2: | |
b = sqrt(bsq) | |
for factor in sub_sub_sure_factors(a - b, u, curve_parameter): | |
yield factor | |
for factor in sub_sub_sure_factors(a + b, u, curve_parameter): | |
yield factor | |
return | |
yield f | |
return | |
def sub_sure_factors(f, u, curve_params): | |
'''Factors n as far as possible using the fact that f came from a mainloop call. | |
Yields factors of n.''' | |
if len(curve_params) == 1: | |
for factor in sub_sub_sure_factors(f, u, curve_params[0]): | |
yield factor | |
return | |
c1 = curve_params[:len(curve_params) >> 1] | |
c2 = curve_params[len(curve_params) >> 1:] | |
if mainloop(f, u, c1) == 1: | |
for factor in sub_sure_factors(f, u, c2): | |
yield factor | |
return | |
if mainloop(f, u, c2) == 1: | |
for factor in sub_sure_factors(f, u, c1): | |
yield factor | |
return | |
for factor in sub_sure_factors(f, u, c1): | |
if isprime(factor): | |
yield factor | |
else: | |
for factor_of_factor in sub_sure_factors(factor, u, c2): | |
yield factor_of_factor | |
return | |
def subtract(p1, p2, n): | |
'''Given two points on an elliptic curve, subtract them pointwise. | |
Returns the resulting point.''' | |
inv = list(range(len(p1))) | |
for i in range(len(p1)): | |
inv[i] = p2[i][0] - p1[i][0] | |
inv = parallel_invert(inv, n) | |
if not isinstance(inv, list): | |
return inv | |
for i in range(len(p1)): | |
m = ((p1[i][1] + p2[i][1]) * inv[i]) % n | |
p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n | |
p2[i][1] = (m * (p1[i][0] - p2[i][0]) + p1[i][1]) % n | |
return p2 | |
def congrats(f, veb): | |
'''Prints a congratulations message when a record factor is found. This only happens if the second parameter (verbosity) is set to True. | |
Returns nothing.''' | |
if veb and f > RECORD: | |
print('Congratulations! You may have found a record factor via pyecm!') | |
print('Please email the Mainloop call to Eric Larson <[email protected]>') | |
return | |
def sure_factors(n, u, curve_params, veb, ra, ov, tdb, pr): | |
'''Factor n as far as possible with given smoothness bound and curve parameters, including possibly (but very rarely) calling ecm again. | |
Yields factors of n.''' | |
f = mainloop(n, u, curve_params) | |
if f == 1: | |
return | |
if veb: | |
print('Found factor:', f) | |
print('Mainloop call was:', n, u, curve_params) | |
if isprime(f): | |
congrats(f, veb) | |
yield f | |
n = n//f | |
if isprime(n): | |
yield n | |
if veb: | |
print('(factor processed)') | |
return | |
for factor in sub_sure_factors(f, u, curve_params): | |
if isprime(factor): | |
congrats(f, veb) | |
yield factor | |
else: | |
if veb: | |
print('entering new ecm loop to deal with stubborn factor:', factor) | |
for factor_of_factor in ecm(factor, True, ov, veb, tdb, pr): | |
yield factor_of_factor | |
n = n//factor | |
if isprime(n): | |
yield n | |
if veb: | |
print('(factor processed)') | |
return | |
def to_tuple(p): | |
'''Converts a list of two-element lists into a list of two-element tuples. | |
Returns a list.''' | |
answer = [] | |
for i in p: | |
answer.append((i[0], i[1])) | |
return tuple(answer) | |
def mainloop(n, u, p1): | |
''' Input: n -- an integer to (try) to factor. | |
u -- the phase 1 smoothness bound | |
p1 -- a list of sigma parameters to try | |
Output: A factor of n. (1 is returned on faliure). | |
Notes: | |
1. Other parameters, such as the phase 2 smoothness bound are selected by the mainloop function. | |
2. This function uses batch algorithms, so if p1 is not long enough, there will be a loss in efficiency. | |
3. Of course, if p1 is too long, then the mainloop will have to use more memory. | |
[The memory is polynomial in the length of p1, log u, and log n].''' | |
k = inv_const(n) | |
log_u = math.log(u) | |
log_log_u = math.log(log_u) | |
log_n = math.log(n) | |
u2 = int(_7_OVER_LOG_2 * u * log_u / log_log_u) | |
ncurves = len(p1) | |
w = int(math.sqrt(_3_OVER_LOG_2 * ncurves / k) - 0.5) | |
number_of_primes = int((ncurves << w) * math.sqrt(LOG_4_OVER_9 * log_n / k) / log_u) # Lagrange multipliers! | |
number_of_primes = min(number_of_primes, int((log_n / math.log(log_n))**2 * ncurves / log_u), int(u / log_u)) | |
number_of_primes = max(number_of_primes, 1) | |
m = math.log(number_of_primes) + log_log_u | |
w = min(w, int((m - 2 * math.log(m) + LOG_3_MINUS_LOG_LOG_2) / LOG_2)) | |
w = max(w, 1) | |
max_order = n + sqrt(n << 2) + 1 # By Hasse's theorem. | |
det_bound = ((1 << w) - 1 + ((w & 1) << 1)) // 3 | |
log_mo = math.log(max_order) | |
p = list(range(number_of_primes)) | |
prime = mpz(2) | |
p1 = get_points(p1, n) | |
if not isinstance(p1, list): | |
return p1 | |
for _ in range(int(log_mo / LOG_2)): | |
p1 = double(p1, n) | |
if not isinstance(p1, list): | |
return p1 | |
for i in range(1, det_bound): | |
prime = (i << 1) + 1 | |
if isprime(prime): | |
for _ in range(int(log_mo / math.log(prime))): | |
p1 = multiply(p1, prime, n) | |
if not isinstance(p1, list): | |
return p1 | |
while prime < sqrt(u) and isinstance(p1, list): | |
for i in range(number_of_primes): | |
prime = next_prime(prime) | |
p[i] = prime ** max(1, int(log_u / math.log(prime))) | |
p1 = fast_multiply(p1, prod(p), n, w) | |
if not isinstance(p1, list): | |
return p1 | |
while prime < u and isinstance(p1, list): | |
for i in range(number_of_primes): | |
prime = next_prime(prime) | |
p[i] = prime | |
p1 = fast_multiply(p1, prod(p), n, w) | |
if not isinstance(p1, list): | |
return p1 | |
del p | |
small_jump = int(greatest_n((1 << (w + 2)) // 3)) | |
small_jump = max(120, small_jump) | |
big_jump = 1 + (int(sqrt((5 << w) // 21)) << 1) | |
total_jump = small_jump * big_jump | |
big_multiple = max(total_jump << 1, ((int(next_prime(prime)) - (total_jump >> 1)) / total_jump) * total_jump) | |
big_jump_2 = big_jump >> 1 | |
small_jump_2 = small_jump >> 1 | |
product = ONE | |
psmall_jump = multiply(p1, small_jump, n) | |
if not isinstance(psmall_jump, list): | |
return psmall_jump | |
ptotal_jump = multiply(psmall_jump, big_jump, n) | |
if not isinstance(ptotal_jump, list): | |
return ptotal_jump | |
pgiant_step = multiply(p1, big_multiple, n) | |
if not isinstance(pgiant_step, list): | |
return pgiant_step | |
small_multiples = [None] | |
for i in range(1, small_jump >> 1): | |
if gcd(i, small_jump) == 1: | |
tmp = multiply(p1, i, n) | |
if not isinstance(tmp, list): | |
return tmp | |
for i in range(len(tmp)): | |
tmp[i] = tmp[i][0] | |
small_multiples.append(tuple(tmp)) | |
else: | |
small_multiples.append(None) | |
small_multiples = tuple(small_multiples) | |
big_multiples = [None] | |
for i in range(1, (big_jump + 1) >> 1): | |
tmp = multiply(psmall_jump, i, n) | |
if not isinstance(tmp, list): | |
return tmp | |
big_multiples.append(to_tuple(tmp)) | |
big_multiples = tuple(big_multiples) | |
psmall_jump = to_tuple(psmall_jump) | |
ptotal_jump = to_tuple(ptotal_jump) | |
while big_multiple < u2: | |
big_multiple += total_jump | |
center_up = big_multiple | |
center_down = big_multiple | |
pgiant_step = add(ptotal_jump, pgiant_step, n) | |
if not isinstance(pgiant_step, list): | |
return pgiant_step | |
prime_up = next_prime(big_multiple - small_jump_2) | |
while prime_up < big_multiple + small_jump_2: | |
s = small_multiples[abs(int(prime_up) - big_multiple)] | |
for j in range(ncurves): | |
product *= pgiant_step[j][0] - s[j] | |
product %= n | |
prime_up = next_prime(prime_up) | |
for i in range(1, big_jump_2 + 1): | |
center_up += small_jump | |
center_down -= small_jump | |
pmed_step_up, pmed_step_down = add_sub_x_only(big_multiples[i], pgiant_step, n) | |
if pmed_step_down == None: | |
return pmed_step_up | |
while prime_up < center_up + small_jump_2: | |
s = small_multiples[abs(int(prime_up) - center_up)] | |
for j in range(ncurves): | |
product *= pmed_step_up[j] - s[j] | |
product %= n | |
prime_up = next_prime(prime_up) | |
prime_down = next_prime(center_down - small_jump_2) | |
while prime_down < center_down + small_jump_2: | |
s = small_multiples[abs(int(prime_down) - center_down)] | |
for j in range(ncurves): | |
product *= pmed_step_down[j] - s[j] | |
product %= n | |
prime_down = next_prime(prime_down) | |
if gcd(product, n) != 1: | |
return gcd(product, n) | |
return 1 | |
def fast_multiply(p, d, n, w): | |
'''Multiplies each element of p by d. Multiplication is on | |
an elliptic curve. Both d and <p> must be odd. Also, <p> may not be divisible by anything less than or equal to 2 * (2**w + (-1)**w) / 3 + 1. | |
Returns the list p multiplied by d.''' | |
mask = (1 << (w << 1)) - 1 | |
flop = mask // 3 | |
g = naf(d) >> 4 | |
precomp = {} | |
m = copy(p) | |
p = double(p, n) | |
for i in range((flop >> w) + (w & 1)): | |
key = naf((i << 1) + 1) | |
precomp[key] = to_tuple(m) | |
precomp[((key & flop) << 1) ^ key] = precomp[key] | |
m = add(p, m, n) | |
while g > 0: | |
if g & 1: | |
t = g & mask | |
sh = 1 + int(math.log(t) / LOG_4) | |
for _ in range(sh): | |
p = double(p, n) | |
if g & 2: | |
p = subtract(precomp[t], p, n) | |
else: | |
p = add(precomp[t], p, n) | |
g >>= (sh << 1) | |
if not isinstance(p, list): | |
return p | |
else: | |
p = double(p, n) | |
g >>= 2 | |
return p | |
def get_points(p1, n): | |
'''Outputs points in Weierstrass form, given input in Suyama | |
parametrization. | |
Returns the points.''' | |
p1 = list(p1) | |
invs = p1[:] | |
ncurves = len(p1) | |
for j in range(ncurves): | |
sigma = mpz(p1[j]) | |
u = (sigma**2 - 5) % n | |
v = sigma << 2 | |
i = (((u * u) % n) * ((v * u << 2) % n)) % n | |
p1[j] = [u, v, i] | |
invs[j] = (i * v) % n | |
invs = parallel_invert(invs, n) | |
if not isinstance(invs, list): | |
return invs | |
for j in range(ncurves): | |
u, v, i = p1[j] | |
inv = invs[j] | |
a = (((((((v - u)**3 % n) * v) % n) * (u + u + u + v)) % n) * inv - 2) % n # <-- This line is a thing of beauty | |
x_0 = (((((u * i) % n) * inv) % n) ** 3) % n # And this one gets second place | |
b = ((((x_0 + a) * x_0 + 1) % n) * x_0) % n | |
x_0 = (b * x_0) % n | |
y_0 = (b**2) % n | |
while a % 3: | |
a += n | |
x_0 = (x_0 + a * b // 3) % n | |
c = (y_0 * ((1 - a**2 // 3) % n)) % n | |
p1[j] = [x_0, y_0, c] | |
return p1 | |
def isprime(n): | |
''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits. | |
Returns the primality of n (True or False).''' | |
if not fastprime(n): | |
return False | |
elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME: | |
return True | |
do_loop = False | |
j = 1 | |
d = n >> 1 | |
a = 2 | |
bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1 | |
while not d & 1: | |
d >>= 1 | |
j += 1 | |
while a < bound: | |
a = next_prime(a) | |
p = atdn(a, d, n) | |
if p == 1 or p == n - 1: | |
continue | |
for _ in range(j): | |
p = (p * p) % n | |
if p == 1: | |
return False | |
elif p == n - 1: | |
do_loop = True | |
break | |
if do_loop: | |
do_loop = False | |
continue | |
return False | |
return True | |
def multiply(p1, d, n): | |
'''Multiplies each element of a list by a number, without using too much overhead. | |
Returns a list p multiplied through by d.''' | |
pos = int(math.log(d) / LOG_2) - 1 | |
p = copy(p1) | |
while pos >= 0: | |
p = double(p, n) | |
if not isinstance(p, list): | |
return p | |
if (d >> pos) & 1: | |
p = add(p1, p, n) | |
if not isinstance(p, list): | |
return p | |
pos -= 1 | |
return p | |
def ecm(n, ra, ov, veb, tdb, pr): # DOCUMENTATION | |
'''Input: | |
n -- An integer to factor | |
veb -- If True, be verbose | |
ra -- If True, select sigma values randomly | |
ov -- How asymptotically fast the calculation is | |
pr -- What portion of the total processing power this run gets | |
Output: Factors of n, via a generator. | |
Notes: | |
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow. | |
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).''' | |
if veb: | |
looking_for = 0 | |
k = inv_const(n) | |
if ra: | |
sigma = 6 + random.randrange(BILLION) | |
else: | |
sigma = 6 | |
for factor in sure_factors(n, k, list(range(sigma, sigma + k)), veb, ra, ov, tdb, pr): | |
yield factor | |
n = n//factor | |
if n == 1: | |
return | |
if ra: | |
sigma += k + random.randrange(BILLION) | |
else: | |
sigma += k | |
x_max = 0.5 * math.log(n) / math.log(k) | |
t = rho_ts(int(x_max)) | |
prime_probs = [] | |
nc = 1 + int(_12_LOG_2_OVER_49 * ov * ov * k) | |
eff_nc = nc / pr | |
for i in range(1 + (int(math.log(n)) >> 1)): | |
if i < math.log(tdb): | |
prime_probs.append(0) | |
else: | |
prime_probs.append(1.0/i) | |
for i in range(len(prime_probs)): | |
p_success = rho_ev((i - 2.65) / math.log(k), t) | |
p_fail = max(0, (1 - p_success * math.log(math.log(k)))) ** (k / pr) | |
prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i]) | |
while n != 1: | |
low = int(k) | |
high = n | |
while high > low + 1: | |
u = (high + low) >> 1 | |
sum = 0 | |
log_u = math.log(u) | |
for i in range(len(prime_probs)): | |
log_p = i - 2.65 | |
log_u = math.log(u) | |
quot = log_p / log_u | |
sum += prime_probs[i] * (rho_ev(quot - 1, t) - rho_ev(quot, t) * log_u) | |
if sum < 0: | |
high = u | |
else: | |
low = u | |
if ra: | |
sigma += nc + random.randrange(BILLION) | |
else: | |
sigma += nc | |
for factor in sure_factors(n, u, list(range(sigma, sigma + nc)), veb, ra, ov, tdb, pr): | |
yield factor | |
n = n // factor | |
for i in range(len(prime_probs)): | |
p_success = rho_ev((i - 2.65) / math.log(u), t) | |
p_fail = max(0, (1 - p_success * math.log(math.log(u)))) ** eff_nc | |
prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i]) | |
prime_probs = prime_probs[:1 + (int(math.log(n)) >> 1)] | |
if veb and n != 1: | |
m = max(prime_probs) | |
for i in range(len(prime_probs)): | |
if prime_probs[i] == m: | |
break | |
new_looking_for = (int(i / _5_LOG_10) + 1) | |
new_looking_for += new_looking_for << 2 | |
if new_looking_for != looking_for: | |
looking_for = new_looking_for | |
print('Searching for primes around', looking_for, 'digits') | |
return | |
def factors(n, veb, ra, ov, pr): | |
'''Generates factors of n. | |
Strips small primes, then feeds to ecm function. | |
Input: | |
n -- An integer to factor | |
veb -- If True, be verbose | |
ra -- If True, select sigma values randomly | |
ov -- How asymptotically fast the calculation is | |
pr -- What portion of the total processing power this run gets | |
Output: Factors of n, via a generator. | |
Notes: | |
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow. | |
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).''' | |
if type(n) not in T: | |
raise ValueError('Number given must be integer or long.') | |
if not 0 < pr <= 1: | |
yield 'Error: pr must be between 0 and 1' | |
return | |
while not n & 1: | |
n >>= 1 | |
yield 2 | |
n = mpz(n) | |
k = inv_const(n) | |
prime = 2 | |
trial_division_bound = max(10 * k**2, 100) | |
while prime < trial_division_bound: | |
prime = next_prime(prime) | |
while not n % prime: | |
n = n//prime | |
yield prime | |
if isprime(n): | |
yield n | |
return | |
if n == 1: | |
return | |
for factor in ecm(n, ra, ov, veb, trial_division_bound, pr): | |
yield factor | |
### End of algorithm code; beginning of interface code ## | |
def is_switch(s): | |
'''Tests whether the input string is a switch (e.g. "-v" or "--help"). | |
Returns True or False.''' | |
for i in range(len(s)): | |
if s[i] != '-': | |
break | |
if i == 0: # s not begin with "-" | |
return False | |
for char in s[i:]: | |
if not char.isalpha(): | |
if char == '=': # Switches like "--portion=" are acceptable | |
return True | |
else: | |
return False | |
return True | |
def parse_switch(s, switch): | |
'''Parses a switch in the form '--string=num' and returns num or calls help() if the string is invalid. | |
Returns the num in '--string=num'.''' | |
try: | |
return float(s[len(switch) + 3:]) | |
except ValueError: | |
help() | |
def valid_input(s): | |
'''Tests the input string for validity as a mathematical expressions. | |
Returns True or False.''' | |
valid = ('(', ')', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '^', ' ', '\t') | |
for char in s: | |
if char not in valid: | |
return False | |
return True | |
def help(): | |
print( '''\ | |
Usage: pyecm [OPTION] [expression to factor] | |
Factor numbers using the Elliptic Curve Method. | |
--portion=num Does only part of the work for factoring, corresponding to | |
what fraction of the total work the machine is doing. Useful for working in | |
parallel. For example, if there are three machines: 1GHz, 1GHz, and 2GHz, print | |
should be set to 0.25 for the 1GHz machines and 0.5 for the 2GHz machine. | |
Implies -r and -v. -r is needed to avoid duplicating work and -v is needed to | |
report results. | |
--ov=num Sets the value of the internal parameter ov, which | |
determines the trade-off between memory and time usage. Do not touch if you do | |
not know what you are doing. Please read all the documentation and understand | |
the full implications of the parameter before using this switch. | |
-n, --noverbose Terse. On by default. Needed to cancel the -v from the | |
--portion or --random switches. If both -n and -v are specified, the one | |
specified last takes precedence. | |
-r, --random Chooses random values for sigma, an internal parameter in | |
the calculation. Implies -v; if you're doing something random, you want to know | |
what's happening. | |
-v, --verbose Explains what is being done with intermediate calculations | |
and results. | |
With no integers to factor given via command-line, read standard input. | |
Please report bugs to Eric Larson <[email protected]>.''') | |
sys.exit() | |
def command_line(veb, ra, ov, pr): | |
l = len(sys.argv) | |
for i in range(1, l): | |
if not is_switch(sys.argv[i]): | |
break | |
for j in range(i, l): # Start with the first non-switch | |
if j != i: # Pretty printing | |
print( '') | |
response = sys.argv[j] | |
if valid_input(response): | |
response = response.replace('^', '**') | |
try: | |
n = eval(response) | |
int(n) | |
except (SyntaxError, TypeError, ValueError): | |
help() | |
else: | |
help() | |
print('Factoring {0}:'.format(n)) | |
if n < 0: | |
print(-1) | |
n = -n | |
if n == 0: | |
print( '0 does not have a well-defined factorization.') | |
continue | |
elif n == 1: | |
print( 1) | |
continue | |
if ov == DUMMY: | |
ov = 2*math.log(math.log(n)) | |
for factor in factors(n, veb, ra, ov, pr): | |
print(factor) | |
def interactive(veb, ra, ov, pr, n): | |
user_input = n | |
while user_input != 'exit' and user_input != 'quit': | |
if valid_input(user_input): | |
user_input = user_input.replace('^', '**') | |
try: | |
n = eval(user_input) | |
int(n) | |
except (SyntaxError, TypeError, ValueError): | |
help() | |
else: | |
help() | |
print('Factoring number %d:' % n) | |
if n < 0: | |
print( -1) | |
n = -n | |
if n == 0: | |
print('0 does not have a well-defined factorization.') | |
print() | |
user_input = input() | |
continue | |
elif n == 1: | |
print(1) | |
print() | |
user_input = input() | |
continue | |
if ov == DUMMY: | |
ov = 2*math.log(math.log(n)) | |
ret_factors = [] | |
for factor in factors(n, veb, ra, ov, pr): | |
ret_factors.append(factor) | |
return ret_factors | |
def defactor(n): | |
pr = 1.0 | |
ov = DUMMY | |
return interactive(False, False, ov, pr, str(n)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment