Last active
October 18, 2018 14:37
-
-
Save vallantin/a6f3024c8a9a334565234cca8ae5a4b6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def import_data_set(url): | |
''' | |
This function imports Tweets data set and decomposes | |
the date field into: | |
- Weekday | |
- Month | |
- Calendar day | |
- Hour | |
- Is weekend? | |
The function also set the field types, shows | |
missing data and creates aditional data. | |
''' | |
df = pd.read_csv(url, | |
encoding='latin-1', | |
usecols=[0,2,5], | |
header=None, | |
names=['sentiment','date','tweet']) | |
# Decompose date field | |
weekday = [] | |
calendar_day = [] | |
hour = [] | |
for date in df.date: | |
element = date.split(' ') | |
weekday.append(element[0]) | |
calendar_day.append(int(element[2])) | |
# Decompose time | |
time = element[3].split(':') | |
hour.append(int(time[0])) | |
df['weekday'] = weekday | |
df['calendar_day'] = calendar_day | |
df['hour'] = hour | |
# Is weekend? | |
is_weekend = [] | |
for day in df['weekday']: | |
if day == 'Sat' or day == 'Sun': | |
is_weekend.append('Y') | |
else: | |
is_weekend.append('N') | |
df['is_weekend'] = is_weekend | |
# Since we only have 2 sentiment labels, let's change | |
# them to a better reading | |
sentiment = [] | |
for s in df['sentiment']: | |
if s == 4: | |
sentiment.append(1) | |
else: | |
sentiment.append(0) | |
df['sentiment'] = sentiment | |
# Capture size, mentions etc in each tweet | |
len_tweet = [] | |
mention = [] | |
link = [] | |
for tweet in df['tweet']: | |
len_tweet.append(len(tweet)) | |
# Look for mentions | |
if tweet.find('@') == -1: | |
mention.append(0) | |
else: | |
mention.append(1) | |
# Look for links | |
if tweet.find('://') == -1: | |
link.append(0) | |
else: | |
link.append(1) | |
df['tweet_size'] = len_tweet | |
df['mention'] = mention | |
df['link'] = link | |
# Change data types | |
df['weekday'] = df.weekday.astype('category') | |
df['calendar_day'] = df.calendar_day.astype('category') | |
df['hour'] = df.hour.astype('category') | |
df['is_weekend'] = df.is_weekend.astype('category') | |
df['mention'] = df.mention.astype('category') | |
df['link'] = df.link.astype('category') | |
df['sentiment'] = df.sentiment.astype('category') | |
print('Data imported | Rows:', df.shape[0], '| Columns:', df.shape[1]) | |
print('Types:\n', df.dtypes) | |
print('Missing data:\n', df.isnull().any()) | |
return df | |
# Import data and start preprocessing | |
data = import_data_set('../data/training.1600000.processed.noemoticon.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment