Created
June 9, 2020 11:34
-
-
Save valtoni/cf84cce45a048c4d69668105fecba9c9 to your computer and use it in GitHub Desktop.
Scala test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // val e = (1 to 10 toList).mkString(",") | |
| import org.apache.spark.sql.types._ | |
| import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType} | |
| import org.apache.spark.sql.{Row, SparkSession} | |
| // 2019-12-10 16:06:40,135 cask datab 0012 REST TRACE [com.kortlet.IEnferinend] (ajp-/192.168.0.1:8009-77) Invoke End | |
| val regexRestBase = """(\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:\d{2},\d{3})[\s\t]+(\w+)[\s\t]+(\w+)[\s\t]+(\d+)[\s\t]+(\w+)[\s\t]+(\w+)[\s\t](\[[\w\.]+\])[\s\t]+(\(.*\))[\s\t]+(.*)""".r | |
| val regexWithDatabase = """(\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:\d{2},\d{3})[\s\t]+(\w+)>(\w+)[\s\t]+(\w+)[\s\t]+(\d+)[\s\t]+(\w+)[\s\t]+(\w+)[\s\t]+(\[[\w\.]+\])[\s\t]+(\(.*\))[\s\t]+(.*)""".r | |
| val regexNormal = """(\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:\d{2},\d{3})[\s\t]+(\w+)[\s\t]+(\[[\w\.]+\])[\s\t]+(\(.*\))[\s\t]+(.*)""".r | |
| val logschema = new StructType().add(StructField("date", StringType, true)).add(StructField("user", StringType, true)).add(StructField("user", StringType, true)).add(StructField("database", StringType, true)).add(StructField("countryCode", StringType, true)).add(StructField("protocol", StringType, true)).add(StructField("level", StringType, true)).add(StructField("clazz", StringType, true)).add(StructField("thread", StringType, true)).add(StructField("message", StringType, true)) | |
| // val logsRDD = spark.sparkContext.textFile("/logs/mast.log.30") | |
| // for (i <- 1 to 30) logsRDD = logsRDD.union(spark.sparkContext.textFile(f"/logs/mast.log.${i}")) | |
| val logsRDD = sc.union(for (i <- 1 to 10) yield spark.sparkContext.textFile(f"/logs/mast?.log.${i}")) | |
| val logRowRDD = logsRDD map { | |
| l => { | |
| l match { | |
| case regexNormal(date, level, clazz, thread, message) => Row(date, "", "", "", "", "", level, clazz, thread, message) | |
| case regexWithDatabase(date, user, user, database, countryCode, protocol, level, clazz, thread, message) => Row(date, user, user, database, countryCode, protocol, level, clazz, thread, message) | |
| case regexRestBase(date, user, database, countryCode, protocol, level, clazz, thread, message) => Row(date, user, "", database, countryCode, protocol, level, clazz, thread, message) | |
| case _ => Row("", "", "", "", "", "", "", "", "", "") | |
| } | |
| } | |
| } | |
| val logDF = spark.createDataFrame(logRowRDD, logschema) | |
| logDF.createOrReplaceTempView("logs") | |
| spark.sql("select substring(date,1,10) as date, user, count(*) as occurences from logs where date != '' group by substring(date,1,10),user order by count(*) desc").show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment