Created
December 22, 2022 19:09
-
-
Save vanbasten23/eaef47354003c92525bf582335397375 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
root@t1v-n-621e873b-w-0:/workspaces/work# python3 pytorch/xla/test/test_dynamic_shape_backward_models.py | |
x_test_nonzero_dev.shape= torch.Size([<=80, 2]) | |
y_test_nonzero_dev.shape= torch.Size([<=80]) | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=665function=eq: | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=757function=bool_: | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/ops/dynamic_ir.cpp, line=113function=getDynamicValue: dim_node_0->getDynamicValue()=79, dim_node_1->getDynamicValue()=79 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/input_metadata.h, line=102function=is_same_shape: typeid(gradSymSizes).name()=N3c108ArrayRefINS_6SymIntEEE, typeid(shapeAsDimVector).name()=N3c108ArrayRefINS_6SymIntEEE | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=893function=call_function: inputs 0: inputs[i].sizes()=[], inputs[i].sym_sizes()=[] | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=915function=call_function: has_post_hooks=false | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=919function=call_function: about to run validate_outputs on fn.name()=BinaryCrossEntropyBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/input_metadata.h, line=102function=is_same_shape: typeid(gradSymSizes).name()=N3c108ArrayRefINS_6SymIntEEE, typeid(shapeAsDimVector).name()=N3c108ArrayRefINS_6SymIntEEE | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=1, sci.is_symbolic()=1 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=665function=eq: | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=757function=bool_: | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/ops/dynamic_ir.cpp, line=113function=getDynamicValue: dim_node_0->getDynamicValue()=79, dim_node_1->getDynamicValue()=79 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=925function=call_function: successfully validate_outputs of function BinaryCrossEntropyBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=893function=call_function: inputs 0: inputs[i].sizes()=[80], inputs[i].sym_sizes()=[<=80] | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=915function=call_function: has_post_hooks=false | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=1, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=665function=eq: | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=757function=bool_: | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/ops/dynamic_ir.cpp, line=113function=getDynamicValue: dim_node_0->getDynamicValue()=79, dim_node_1->getDynamicValue()=1 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=919function=call_function: about to run validate_outputs on fn.name()=SqueezeBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/input_metadata.h, line=102function=is_same_shape: typeid(gradSymSizes).name()=N3c108ArrayRefINS_6SymIntEEE, typeid(shapeAsDimVector).name()=N3c108ArrayRefINS_6SymIntEEE | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=1, sci.is_symbolic()=1 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=665function=eq: | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=757function=bool_: | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/ops/dynamic_ir.cpp, line=113function=getDynamicValue: dim_node_0->getDynamicValue()=79, dim_node_1->getDynamicValue()=79 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=925function=call_function: successfully validate_outputs of function SqueezeBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=893function=call_function: inputs 0: inputs[i].sizes()=[80, 1], inputs[i].sym_sizes()=[<=80, 1] | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=915function=call_function: has_post_hooks=false | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/aten_xla_type.cpp, line=2538function=sigmoid_backward: grad_output.sizes()=[80, 1], output.sym_sizes()=[<=80, 1] | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor_methods.cpp, line=2194function=sigmoid_backward: grad_output->shape()=f32[<=80,1]{1,0}, output->shape()=f32[<=80,1]{1,0} | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=919function=call_function: about to run validate_outputs on fn.name()=SigmoidBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/input_metadata.h, line=102function=is_same_shape: typeid(gradSymSizes).name()=N3c108ArrayRefINS_6SymIntEEE, typeid(shapeAsDimVector).name()=N3c108ArrayRefINS_6SymIntEEE | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=1, sci.is_symbolic()=1 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=665function=eq: | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/tensor.cpp, line=757function=bool_: | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/xla/torch_xla/csrc/ops/dynamic_ir.cpp, line=113function=getDynamicValue: dim_node_0->getDynamicValue()=79, dim_node_1->getDynamicValue()=79 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=925function=call_function: successfully validate_outputs of function SigmoidBackward0 | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=893function=call_function: inputs 0: inputs[i].sizes()=[80, 1], inputs[i].sym_sizes()=[<=80, 1] | |
xw32, file=/workspaces/work/pytorch/torch/csrc/autograd/engine.cpp, line=915function=call_function: has_post_hooks=false | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
xw32, file=/workspaces/work/pytorch/c10/core/SymInt.cpp, line=99function=operator==: is_symbolic()=0, sci.is_symbolic()=0 | |
Traceback (most recent call last): | |
File "pytorch/xla/test/test_dynamic_shape_backward_models.py", line 83, in <module> | |
train(model, loss_fn=criterion, optimizer=optimizer) | |
File "pytorch/xla/test/test_dynamic_shape_backward_models.py", line 70, in train | |
loss.backward() | |
File "/home/ptxla/.local/lib/python3.8/site-packages/torch/_tensor.py", line 484, in backward | |
torch.autograd.backward( | |
File "/home/ptxla/.local/lib/python3.8/site-packages/torch/autograd/__init__.py", line 197, in backward | |
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass | |
RuntimeError: /workspaces/work/pytorch/xla/torch_xla/csrc/helpers.cpp:273 : Check failed: out_size <= size_at_dyndim / input_shape.dimensions( input_dynamic_dimension) (10 vs. 1) | |
*** Begin stack trace *** | |
tsl::CurrentStackTrace[abi:cxx11]() | |
torch_xla::XlaHelpers::GetDynamicReshapeInfo(xla::Shape const&, absl::lts_20220623::Span<long const>) | |
torch_xla::XlaHelpers::GetDynamicReshape(xla::Shape const&, absl::lts_20220623::Span<long const>) | |
torch_xla::Permute::MakePermuteShape(xla::Shape const&, absl::lts_20220623::Span<long const>) | |
torch_xla::ViewInfo::ViewInfo(torch_xla::ViewInfo::Type, xla::Shape, std::vector<long, std::allocator<long> >) | |
torch_xla::tensor_methods::transpose(c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> > const&, long, long) | |
torch_xla::XLANativeFunctions::t(at::Tensor const&) | |
at::_ops::t::redispatch(c10::DispatchKeySet, at::Tensor const&) | |
at::_ops::t::redispatch(c10::DispatchKeySet, at::Tensor const&) | |
at::_ops::t::call(at::Tensor const&) | |
torch::autograd::generated::AddmmBackward0::apply(std::vector<at::Tensor, std::allocator<at::Tensor> >&&) | |
torch::autograd::Engine::evaluate_function(std::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::shared_ptr<torch::autograd::ReadyQueue> const&) | |
torch::autograd::Engine::thread_main(std::shared_ptr<torch::autograd::GraphTask> const&) | |
torch::autograd::Engine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) | |
torch::autograd::python::PythonEngine::thread_init(int, std::shared_ptr<torch::autograd::ReadyQueue> const&, bool) | |
clone | |
*** End stack trace *** | |
Unable to map dynamic dimension of shape f32[<=80,10]{1,0} to output sizes (10, 80) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment