Last active
April 25, 2024 19:55
-
-
Save vankesteren/0fb619b458f74fa6a8381907c85adb7b to your computer and use it in GitHub Desktop.
Ideal point model in stan
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Ideal point model in stan / R | |
# example taken & simplified from https://medewitt.github.io/resources/stan_ideal_point.html | |
library(tidyverse) | |
library(cmdstanr) | |
# simulate data: 100 legislators, 150 votes | |
set.seed(1834) | |
N_legislators <- 50 | |
N_bills <- 150 | |
vote_probs <- c( | |
rep(0.9, 21), # Liberals (majority Gov. party) | |
rep(0.7, 11), # Conservatives (uneasy coalition) | |
rep(0.3, 8), # Socialists (opposition) | |
rep(0.25, 5), # Greens (opposition) | |
rep(0.01, 3), # Religious (opposition) | |
rep(0.5, 2) # Independents (random) | |
) | |
votes_data <- tibble( | |
bill_id = rep(1:N_bills, each = N_legislators), | |
legislator_id = rep(1:N_legislators, N_bills), | |
vote_prob = rep(vote_probs, N_bills), | |
vote = rbinom(N_bills*N_legislators, 1, vote_prob), | |
legislator_party = as_factor(case_when( | |
legislator_id <= 20 ~ "The Classic Liberal Party", | |
legislator_id > 20 & legislator_id <= 32 ~ "The Conservative Party", | |
legislator_id > 32 & legislator_id <= 40 ~ "The Socialist Party", | |
legislator_id > 40 & legislator_id <= 45 ~ "The Green Party", | |
legislator_id > 45 & legislator_id <= 48 ~ "The Religious Party", | |
TRUE ~ "Independent" | |
)) | |
) | |
# transform to stan data | |
stan_data <- list( | |
N_legislators = N_legislators, | |
N_bills = N_bills, | |
N_observations = nrow(votes_data), | |
idx_legi = votes_data$legislator_id, | |
idx_bill = votes_data$bill_id, | |
y = votes_data$vote | |
) | |
# compile and fit the model! | |
mod <- cmdstan_model("idealpoint.stan") | |
fit <- mod$optimize(data = stan_data, jacobian = TRUE) | |
# make a plot on how well we did! | |
votes_data |> | |
filter(bill_id == 1) |> | |
mutate(alpha = res$mle("alpha")) |> | |
ggplot(aes(x = legislator_id, y = alpha, color = legislator_party)) + | |
geom_point() + | |
geom_point(aes(y = -log(vote_prob) + mean(log(vote_prob))), color = "black", pch = 2) + | |
theme_linedraw() + | |
labs( | |
title = "Estimation accuracy of legislator parameter", | |
x = "Legislator ID", | |
color = "Legislator party", | |
y = "Log-odds ratio", | |
subtitle = "Inaccuracies due to regularization towards the mean (prior & scaling)" | |
) | |
ggsave("idealpoint.png", width = 9, height = 5) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int<lower=1> N_legislators; | |
int<lower=1> N_bills; | |
int<lower=1> N_observations; | |
array[N_observations] int<lower=1, upper=N_legislators> idx_legi; // Legislator for observation n | |
array[N_observations] int<lower=1, upper=N_bills> idx_bill; // Bill for observation n | |
array[N_observations] int<lower=0, upper=1> y; // Vote of observation n | |
} | |
parameters { | |
vector[N_bills] gamma; | |
vector[N_legislators] alpha; | |
vector[N_bills] beta; | |
} | |
model { | |
//priors on parameters | |
alpha ~ normal(0, 1); | |
beta ~ normal(0, 10); | |
gamma ~ normal(0, 10); | |
// likelihood | |
y ~ bernoulli_logit(gamma[idx_bill] .* alpha[idx_legi] - beta[idx_bill]); | |
} |
Author
vankesteren
commented
Apr 25, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment