Skip to content

Instantly share code, notes, and snippets.

@vankesteren
Created July 28, 2023 09:44
Show Gist options
  • Save vankesteren/310ba8ff91149c5d91fdffb1cb42f5d3 to your computer and use it in GitHub Desktop.
Save vankesteren/310ba8ff91149c5d91fdffb1cb42f5d3 to your computer and use it in GitHub Desktop.
Double check separate vs. joint model in lavaan
library(lavaan)
# sim_dat function from my blog post
# https://erikjanvankesteren.nl/blog/multivariate_regression
sim_dat <- function(N = 100, P = 5, Q = 2, varprop = 0.5, rho_X = 0, rho_B = 0, rho_E = 0, exact = TRUE) {
# Create X matrix
X <- matrix(rnorm(N*P), N)
RX <- matrix(rho_X, P, P)
diag(RX) <- 1
CRX <- chol(RX)
X <- if (exact) X %*% solve(chol(var(X)), CRX) else X %*% CRX
# Create B matrix
B <- matrix(rnorm(P*Q), P)
RB <- matrix(rho_B, Q, Q)
diag(RB) <- 1
CRB <- chol(RB)
B <- if (exact) B %*% solve(chol(var(B)), CRB) else B %*% CRB
# Create E matrix
E <- matrix(rnorm(N*Q), N)
XB <- X %*% B
vXB <- diag(var(XB))
sE <- sqrt(vXB*varprop/(1-varprop))
RE <- matrix(rho_E, Q, Q)
diag(RE) <- 1
CVE <- chol(RE) %*% diag(sE)
E <- if (exact) E %*% solve(chol(var(E)), CVE) else E %*% CVE
# Create Y matrix
Y <- XB + E
return(list(Y = Y, X = X, B = B, E = E))
}
# generate data with residual correlations
dat <- sim_dat(rho_E = 0.4)
# turn it into a data frame for lavaan
df <- data.frame(dat$Y) |> setNames(c("Y1", "Y2")) |> cbind(data.frame(dat$X))
# model without including residual correlation
model_separate <- "
Y1 ~ X1 + X2 + X3 + X4 + X5
Y2 ~ X1 + X2 + X3 + X4 + X5
Y1 ~~ Y1
Y2 ~~ Y2
Y1 ~~ 0*Y2 # do not allow residual covariance!
"
fit_separate <- sem(model_separate, df)
# model that includes residual correlation
model_joint <- "
Y1 ~ X1 + X2 + X3 + X4 + X5
Y2 ~ X1 + X2 + X3 + X4 + X5
Y1 ~~ Y1
Y2 ~~ Y2
Y1 ~~ Y2 # allow residual covariance!
"
fit_joint <- sem(model_joint, df)
# regression parameter estimates are the same
partable(fit_separate)[1:13,]
partable(fit_joint)[1:13,]
# also the same as lm
fit_lm <- lm(Y ~ X, dat)
summary(fit_lm)
# double check that we indeed have residual covariance
cor(residuals(fit_lm))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment