Created
November 7, 2022 10:37
-
-
Save vankesteren/804672941e54581534c2ac71c60d66bf to your computer and use it in GitHub Desktop.
LightGBM for general utility
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(synthpop) | |
library(lightgbm) | |
library(tidyverse) | |
df <- SD2011 | |
syn_res <- syn(df[,1:7]) | |
sdf <- syn_res$syn | |
train_params <- list( | |
learning_rate = 1.0, | |
objective = "binary", | |
nthread = 6L, | |
force_row_wise = TRUE | |
) | |
pmse_dat <- bind_rows(df[,1:7], sdf) |> mutate(label = rep(c(0L, 1L), each = nrow(df))) | |
y <- model.response(model.frame(label ~ ., data = pmse_dat)) | |
X <- model.matrix(label ~ ., data = pmse_dat) | |
Xs <- model.matrix(label ~ ., data = pmse_dat |> filter(label == 1)) | |
lgbdata <- lgb.Dataset(data = unname(X), label = y) | |
n_sim <- 20L | |
max_nrounds <- 10000L | |
Pmat <- matrix(0.0, nrow(Xs), n_sim) | |
round_seq <- round(seq(1, max_nrounds, length.out = n_sim)) | |
for (i in seq_along(round_seq)) { | |
cat("iteration", i, "\n") | |
fit <- lgb.train(params = train_params, data = lgbdata, nrounds = round_seq[i], | |
verbose = 0L) | |
Pmat[,i] <- predict(fit, Xs) | |
} | |
pMSEs <- colMeans((Pmat - nrow(Xs) / nrow(X))^2) | |
plot(round_seq, pMSEs, type = "l") |
Author
vankesteren
commented
Nov 7, 2022
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment