Created
October 24, 2022 20:20
-
-
Save vankesteren/8ba9aab6f4e2dbe940de459c6d8ffd0d to your computer and use it in GitHub Desktop.
Univariate t-mixture modelling with R. Also works for gaussian! (albeit a bit slow)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# t-mixture modeling with EM | |
priorp <- 0.6 | |
m1 <- 0 | |
m2 <- 3 | |
s1 <- 1 | |
s2 <- 0.707 | |
df1 <- 2 | |
df2 <- Inf | |
# generate some data with 2 classes | |
N <- 1000 | |
cl <- rbinom(N, 1, priorp) | |
x <- cl*(rt(N, df = df1) + m1)*s1 + (1-cl)*(rt(N, df = df2) + m2)*s2 | |
# Maximum likelihood estimates of location-scale t-distribution | |
t_mle <- function(x, w) { | |
# p[1]: mean, p[2]: log(sd), p[3]: log(df - 1) | |
res <- optim( | |
par = c(0, 0, 1), | |
fn = function(p, x, df, w) { | |
ll <- dt((x - p[1])/exp(p[2]), df = exp(p[3]) + 1, log = TRUE) - p[2] | |
sum(ll*w) | |
}, | |
method = "BFGS", | |
control = list(fnscale = -1), # max, not min | |
x = x, | |
df = df, | |
w = w | |
) | |
if (res$convergence != 0) warning(res$message) | |
return(list(mu = res$par[1], sigma = exp(res$par[2]), df = exp(res$par[3]) + 1)) | |
} | |
# the e-step, compute posterior probabilities from density | |
estep <- function(x, theta, K = 2) { | |
d <- matrix(0.0, length(x), K) | |
for (k in 1:K) { | |
d[,k] <- dt((x - theta$m[k])/theta$s[k], df = theta$df[k]) | |
} | |
t(apply(d, 1, function(x) x/sum(x))) | |
} | |
# the m-step, compute parameters using posterior probability | |
mstep <- function(x, postp, df = 2, K = 2) { | |
s <- numeric(K) | |
m <- numeric(K) | |
df <- numeric(K) | |
for (k in 1:K) { | |
res_k <- t_mle(x, w = postp[,k]) | |
s[k] <- res_k$sigma | |
m[k] <- res_k$mu | |
df[k] <- res_k$df | |
} | |
return(list(m = m, s = s, df = df)) | |
} | |
# plotting function | |
dmix <- function(x, postp, theta) { | |
priorp <- colMeans(postp) | |
d <- 0 | |
for (k in 1:length(priorp)) { | |
d <- d + priorp[k]*dt((x - theta$m[k]) / theta$s[k], df = theta$df[k]) | |
} | |
d | |
} | |
# initial values | |
theta <- list( | |
m = c(-1, 1), | |
s = c(1, 1), | |
df = c(4, 4) | |
) | |
# run EM | |
for (i in 1:100) { | |
postp <- estep(x, theta, K = 2) | |
theta <- mstep(x, postp, K = 2) | |
} | |
# plot | |
hist(x, freq = FALSE, breaks = "FD", xlim = c(-5, 7), main = paste("Iteration", i)) | |
curve(dmix(x, postp, theta), add = TRUE, n = 1000, from = -6, to = 8) | |
# check out the parameters | |
theta | |
colMeans(postp) |
Author
vankesteren
commented
Oct 24, 2022
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment