Last active
May 30, 2022 15:02
-
-
Save vankesteren/b7c522e319a54944a1a581b7bb78a3ed to your computer and use it in GitHub Desktop.
MetaSynth in Julia
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Distributions | |
using Random | |
using DataFrames | |
struct MetaVariable | |
name::String | |
p_missing::Float64 | |
dist::UnivariateDistribution | |
end | |
function MetaVariable(name::String, col::Vector, dist_options::Vector) | |
col_ = collect(skipmissing(col)) | |
bic = Inf | |
fdist = Normal(0, 1) | |
for dist in dist_options | |
try | |
fitted_dist = fit(dist, col_) | |
bic_cur = length(params(fdist))*log(length(col_)) - 2*sum(logpdf.(fitted_dist, col_)) | |
if bic_cur < bic | |
fdist = fitted_dist | |
bic = bic_cur | |
end | |
catch | |
@debug "Distribution '$dist' could not be estimated: $e" | |
end | |
end | |
return MetaVariable(name, (length(col) - length(col_)) / length(col), fdist) | |
end | |
function MetaVariable(name::String, col::Vector{Union{Missing, Float64}}) | |
MetaVariable(name, col, [Normal, LogNormal, Exponential, Gamma, Cauchy, Beta]) | |
end | |
function MetaVariable(name::String, col::Vector{Union{Missing, Int}}) | |
MetaVariable(name, col, [Bernoulli, Binomial, Categorical, DiscreteUniform, Geometric]) | |
end | |
function draw(x::MetaVariable, N::Int) | |
out = convert(Vector{Union{Missing, eltype(x.dist)}}, rand(x.dist, N)) # eltype is not the right thing here | |
out[rand(N) .< x.p_missing] .= missing | |
return out | |
end | |
struct MetaDataset | |
N::Int | |
vars::Vector{MetaVariable} | |
end | |
function MetaDataset(df::DataFrame) | |
N, P = size(df) | |
vars = [] | |
for p in 1:P | |
col = df[:,p] | |
nm = names(df)[p] | |
push!(vars, MetaVariable(nm, col)) | |
end | |
return MetaDataset(N, vars) | |
end | |
function draw(x::MetaDataset, N::Int) | |
return DataFrame([draw(var, N) for var in x.vars], [var.name for var in x.vars]) | |
end | |
function draw(x::MetaDataset) | |
return draw(x, x.N) | |
end | |
function print(x::MetaDataset) | |
println("N: ", x.N) | |
println("Vars:") | |
for var in x.vars | |
println(" - ", var.name, " | ", var.dist, " (missing: ", var.p_missing, ")") | |
end | |
end | |
# generate some data from distributions and infer MetaDataset | |
mds = MetaDataset(100, [ | |
MetaVariable("NormalVar", 0.3, Normal(2, 1)), | |
MetaVariable("LogNormalVar", 0.0, LogNormal(5, 3)), | |
MetaVariable("Categorical", 0.2, Categorical([.1, .3, .3, .2, .1])) | |
]) | |
df = draw(mds) | |
mds_fitted = MetaDataset(df) | |
print(mds_fitted) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment