-
-
Save varunagrawal/83c22e9bc88ccc77744a747dfb19010d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gc | |
import numpy as np | |
import sys | |
import time | |
import torch | |
from torch.autograd import Variable | |
import torchvision.models as models | |
import torch.backends.cudnn as cudnn | |
def measure(model, x, y): | |
# synchronize gpu time and measure fp | |
torch.cuda.synchronize() | |
t0 = time.time() | |
y_pred = model(x) | |
torch.cuda.synchronize() | |
elapsed_fp = time.time()-t0 | |
# zero gradients, synchronize time and measure | |
model.zero_grad() | |
t0 = time.time() | |
y_pred.backward(y) | |
torch.cuda.synchronize() | |
elapsed_bp = time.time()-t0 | |
return elapsed_fp, elapsed_bp | |
def benchmark(model, x, y): | |
# transfer the model on GPU | |
model.cuda() | |
# DRY RUNS | |
for i in range(5): | |
_, _ = measure(model, x, y) | |
print('DONE WITH DRY RUNS, NOW BENCHMARKING') | |
# START BENCHMARKING | |
t_forward = [] | |
t_backward = [] | |
for i in range(10): | |
t_fp, t_bp = measure(model, x, y) | |
t_forward.append(t_fp) | |
t_backward.append(t_bp) | |
# free memory | |
del model | |
return t_forward, t_backward | |
def main(): | |
# set the seed for RNG | |
if len(sys.argv)==2: | |
torch.manual_seed(int(sys.argv[1])) | |
else: | |
torch.manual_seed(1234) | |
# set cudnn backend to benchmark config | |
cudnn.benchmark = True | |
# instantiate the models | |
resnet18 = models.resnet18() | |
resnet34 = models.resnet34() | |
resnet50 = models.resnet50() | |
resnet101 = models.resnet101() | |
resnet152 = models.resnet152() | |
alexnet = models.alexnet() | |
vgg16 = models.vgg16() | |
# build the dict to iterate over | |
architectures = {'resnet18': resnet18, | |
'resnet34': resnet34, | |
'resnet50': resnet50, | |
'resnet101': resnet101, | |
'resnet152': resnet152, | |
'alexnet': alexnet, | |
'vgg16': vgg16 | |
} | |
# build dummy variables to input and output | |
x = Variable(torch.randn(1, 3, 224, 224)).cuda() | |
y = torch.randn(1, 1000).cuda() | |
# loop over architectures and measure them | |
for deep_net in architectures: | |
print(deep_net) | |
t_fp, t_bp = benchmark(architectures[deep_net], x, y) | |
# print results | |
print('FORWARD PASS: ', np.mean(np.asarray(t_fp)*1e3), '+/-', np.std(np.asarray(t_fp)*1e3)) | |
print('BACKWARD PASS: ', np.mean(np.asarray(t_bp)*1e3), '+/-', np.std(np.asarray(t_bp)*1e3)) | |
print('RATIO BP/FP:', np.mean(np.asarray(t_bp))/np.mean(np.asarray(t_fp))) | |
# write the list of measures in files | |
fname = deep_net+'-benchmark.txt' | |
with open(fname, 'w') as f: | |
for (fp_time, bp_time) in zip(t_fp, t_bp): | |
f.write(str(fp_time)+" "+str(bp_time)+" \n") | |
# force garbage collection | |
gc.collect() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment