Created
July 16, 2017 19:14
-
-
Save vb100/282e6753ad23524c762d9ac582a85193 to your computer and use it in GitHub Desktop.
Polynomial Regression Template for Machine learning in R programming language. Prediction calculation.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Regression Template | |
# Importing the dataset | |
dataset = read.csv('Position_Salaries.csv') | |
dataset = dataset[2:3] # Take into consideration onle 2 and 3 columns | |
# Splitting the datase into the Training set and Test set | |
#install.packages('caTools') | |
#library(caTools) | |
#set.seed(123) | |
#split = sample.split(dataset$DependentVariable, SplitRatio = 0.8) | |
#training_set = subset(dataset, split == TRUE) | |
#test_se = subset(dataset, split == FALSE) | |
# Feature Scaling | |
# training_set = scale(training_set) | |
# test_set = scale(test_set) | |
# Fitting the Regression Model to the dataset | |
# Create a regressor here | |
# Predicting a new result | |
y_pred = predict(regressor, data.frame(Level = 6.5)) | |
# Visualising the Regression Model results | |
library(ggplot2) | |
ggplot() + | |
geom_point(aes(x = dataset$Level, y = dataset$Salary), | |
colour = 'red') + | |
geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = )), | |
colour = 'blue') + | |
ggtitle('Truth of Bluff (Regression Model)') + | |
xlab('Level') + | |
ylab('Salary') | |
# Visualising the Regression Model results (for higher resolution and smoother curve) | |
library(ggplot2) | |
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1) | |
ggplot() + | |
geom_point(aes(x = x_grid, y =data.frame(Level = x_grid)), | |
colour = 'red') + | |
geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = )), | |
colour = 'blue') + | |
ggtitle('Truth of Bluff (Regression Model)') + | |
xlab('Level') + | |
ylab('Salary') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment