Created
March 26, 2018 19:30
-
-
Save vb100/6af31cbf9950e598d01cd6add98a3814 to your computer and use it in GitHub Desktop.
Automatic implementations of Backward Elimination in Python.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import statsmodels.formula.api as sm | |
def backwardElimination(x, SL): | |
numVars = len(x[0]) | |
temp = np.zeros((50,6)).astype(int) | |
for i in range(0, numVars): | |
regressor_OLS = sm.OLS(y, x).fit() | |
maxVar = max(regressor_OLS.pvalues).astype(float) | |
adjR_before = regressor_OLS.rsquared_adj.astype(float) | |
if maxVar > SL: | |
for j in range(0, numVars - i): | |
if (regressor_OLS.pvalues[j].astype(float) == maxVar): | |
temp[:,j] = x[:, j] | |
x = np.delete(x, j, 1) | |
tmp_regressor = sm.OLS(y, x).fit() | |
adjR_after = tmp_regressor.rsquared_adj.astype(float) | |
if (adjR_before >= adjR_after): | |
x_rollback = np.hstack((x, temp[:,[0,j]])) | |
x_rollback = np.delete(x_rollback, j, 1) | |
print (regressor_OLS.summary()) | |
return x_rollback | |
else: | |
continue | |
regressor_OLS.summary() | |
return x | |
SL = 0.05 | |
X_opt = X[:, [0, 1, 2, 3, 4, 5]] | |
X_Modeled = backwardElimination(X_opt, SL) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Can you please help with the error: 'float' object has no attribute 'astype' on the backward elimination method
AttributeError Traceback (most recent call last)
in ()
1 SL = 0.05
2 X_opt = X[:, [0, 1, 2, 3, 4, 5]]
----> 3 X_Modeled = backwardElimination(X_opt, SL)
in backwardElimination(x, SL)
5 for i in range(0, numVars):
6 regressor_OLS = sm.OLS(y, x).fit()
----> 7 maxVar = max(regressor_OLS.pvalues).astype(float)
8 adjR_before = regressor_OLS.rsquared_adj.astype(float)
9 if maxVar > SL:
AttributeError: 'float' object has no attribute 'astype'