Last active
May 15, 2023 06:39
-
-
Save vdparikh/1d8e9de803d5fac869a6f038ad4a5151 to your computer and use it in GitHub Desktop.
ChatGPT4All
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
wget https://the-eye.eu/public/AI/models/nomic-ai/gpt4all/gpt4all-lora-quantized.bin | |
pip install pyllama | |
mkdir llama | |
python -m llama.download --model_size 7B --folder llama/ | |
# https://github.com/nomic-ai/pygpt4all/pyllamacpp | |
# pip install pyllamacpp fails and so directly download it from github | |
git clone --recursive https://github.com/nomic-ai/pygpt4all/ && cd pyllamacpp | |
pip install . | |
pyllamacpp-convert-gpt4all gpt4all-lora-quantized.bin llama/tokenizer.model gpt4all-lora-q-converted.bin | |
GPT4ALL_MODEL_PATH = "/root/gpt4all-lora-q-converted.bin" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from langchain.llms import LlamaCpp | |
from langchain import PromptTemplate, LLMChain | |
from langchain.document_loaders import TextLoader | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import RetrievalQA | |
from langchain.embeddings import LlamaCppEmbeddings | |
print("running") | |
GPT4ALL_MODEL_PATH="/root/gpt4all-lora-q-converted.bin" | |
print("loading llm") | |
llm = LlamaCpp(model_path=GPT4ALL_MODEL_PATH,max_tokens=128) | |
print("creating fragment") | |
def search_context(src, phrase, buffer=100): | |
with open(src, 'r') as f: | |
txt=f.read() | |
words = txt.split() | |
index = words.index(phrase) | |
start_index = max(0, index - buffer) | |
end_index = min(len(words), index + buffer+1) | |
return ' '.join(words[start_index:end_index]) | |
fragment = './fragment.txt' | |
with open(fragment, 'w') as fo: | |
_txt = search_context('./state_of_the_union.txt', "Ketanji") | |
fo.write(_txt) | |
print("loading fragment") | |
loader = TextLoader('./fragment.txt') | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
print("llama embeddings") | |
llama_embeddings = LlamaCppEmbeddings(model_path=GPT4ALL_MODEL_PATH, n_batch=512) | |
persist_directory = 'db_2' | |
docsearch = Chroma.from_documents(documents=texts, embedding=llama_embeddings, persist_directory=persist_directory) | |
MIN_DOCS = 1 | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={"k": MIN_DOCS})) | |
query = "What did the president say about Ketanji Brown Jackson" | |
print(query) | |
output = qa.run(query) | |
print(output) | |
""" | |
index = VectorstoreIndexCreator(embedding=llama_embeddings, | |
vectorstore_kwargs={"persist_directory": "db"} | |
).from_loaders([loader]) | |
query = "What did the president say about Ketanji Brown Jackson" | |
index.query(query, llm=llm) | |
""" | |
template = """ | |
Question: {question} | |
Answer: | |
""" | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["question"]) | |
llm = LlamaCpp(model_path=GPT4ALL_MODEL_PATH) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
question = "What did the president say about Ketanji Brown Jackson" | |
resp = llm_chain.run(question) | |
print(resp) | |
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# pip install unstructured | |
# wget wget https://s21.q4cdn.com/399680738/files/doc_financials/2022/q4/Meta-12.31.2022-Exhibit-99.1-FINAL.pdf | |
# mkdir docs | |
# mv *.pdf docs/ | |
# pip install pdf2image | |
# pip install pytesseract | |
# apt-get install poppler-utils | |
# pip install 'git+https://github.com/facebookresearch/detectron2.git' | |
# pip install Pillow==9.0.0 | |
import os | |
from langchain.llms import LlamaCpp | |
from langchain import PromptTemplate, LLMChain | |
from langchain.document_loaders import TextLoader | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import RetrievalQA | |
from langchain.embeddings import LlamaCppEmbeddings | |
from langchain.document_loaders import UnstructuredPDFLoader | |
from detectron2.config import get_cfg | |
cfg = get_cfg() | |
cfg.MODEL.DEVICE = 'gpu' | |
print("running") | |
GPT4ALL_MODEL_PATH="/root/gpt4all-lora-q-converted.bin" | |
print("loading llm") | |
llm = LlamaCpp(model_path=GPT4ALL_MODEL_PATH,max_tokens=128) | |
print("loading fragment") | |
#loader = TextLoader('./fragment.txt') | |
text_folder = 'docs' | |
#loaders = [UnstructuredPDFLoader(os.path.join(text_folder, fn)) for fn in os.listdir(text_folder)] | |
loader = UnstructuredPDFLoader("docs/Meta-12.31.2022-Exhibit-99.1-FINAL.pdf") | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
print("llama embeddings") | |
llama_embeddings = LlamaCppEmbeddings(model_path=GPT4ALL_MODEL_PATH, n_batch=512) | |
persist_directory = 'db_2' | |
docsearch = Chroma.from_documents(documents=texts, embedding=llama_embeddings, persist_directory=persist_directory) | |
MIN_DOCS = 1 | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={"k": MIN_DOCS})) | |
query = "How much revenue did Meta make in 2022?" | |
print(query) | |
output = qa.run(query) | |
print(output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment