Created
March 3, 2015 08:10
-
-
Save vehrka/77a4640bb5fcd1e7f038 to your computer and use it in GitHub Desktop.
Python 3: Pandas to Postgres / Postgres to Pandas
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import psycopg2 | |
from basiclogger import pyLogger | |
#from datetime import datetime | |
from pandas import DataFrame | |
from sqlalchemy import create_engine | |
FILENAME = 'dataframetopostgres.log' | |
class Df2Pg: | |
"""Puts the data in the DataFrame in a Postgres database | |
""" | |
class ReadFaker: | |
""" This could be extended to include the index column optionally. Right now the index | |
is not inserted | |
""" | |
def __init__(self, data): | |
self.iter = list(data.itertuples()) | |
def readline(self, size=None): | |
try: | |
prop = self.iter.pop(0) | |
line = prop[1:] # element 0 is the index | |
row = '\t'.join(x if isinstance(x, str) else str(x) for x in line) + '\n' | |
# in my case all strings in line are unicode objects. | |
except IndexError: | |
return '' | |
else: | |
return row | |
read = readline | |
def __init__(self, df, user, password, host, port, databasename, table, columns=None, logname=FILENAME): | |
""" Gets: | |
df - the dataframe | |
table - the table name | |
conn_str - psycopg2 connection string | |
columns - list with field names | |
example: | |
Df2Pg(df, user, pass, host, port, dbname, 's_schema.t_table', ['field1','field2']) | |
""" | |
self.logger = pyLogger(logname, 'INFO') | |
conn_str = 'postgres://{}:{}@{}:{}/{}'.format(user, password, host, port, databasename) | |
self.__insert(df, table, conn_str, columns) | |
def __insert(self, df, table, conn_str, columns=None): | |
#time1 = datetime.now() | |
close_con = False | |
inserted_rows = df.shape[0] | |
data = self.ReadFaker(df) | |
con = psycopg2.connect(conn_str) | |
try: | |
curs = con.cursor() | |
# self.logger.log.debug('inserting %s entries into %s ...' % (inserted_rows, table)) | |
if columns is not None: | |
curs.copy_from(data, table, null='nan', columns=[col for col in columns]) | |
else: | |
curs.copy_from(data, table, null='nan') | |
con.commit() | |
curs.close() | |
if close_con: | |
con.close() | |
except psycopg2.Error as e: | |
self.logger.log.error(e.pgerror) | |
self.logger.log.error(e.pgcode) | |
con.rollback() | |
if close_con: | |
con.close() | |
raise e | |
#time2 = datetime.now() | |
# self.logger.log.debug(time2 - time1) | |
self.logger.close() | |
return inserted_rows | |
class Pg2Df(): | |
"""Converts a pg database query into a Pandas DataFrame""" | |
def __init__(self, user, password, host, port, databasename, sql, logname=FILENAME): | |
self.logger = pyLogger(logname, 'INFO') | |
self.__insert(user, password, host, port, databasename, sql) | |
def __insert(self, user, password, host, port, databasename, sql): | |
"""Creates the engine, sends the SQL retrieves the DataFrame""" | |
try: | |
connstring = 'postgres://{}:{}@{}:{}/{}'.format(user, password, host, port, databasename) | |
engine = create_engine(connstring, echo=False, implicit_returning=False) | |
rs = engine.execute(sql) | |
d = rs.fetchall() | |
h = list(rs.keys()) | |
self.dtf = DataFrame.from_records(d, columns=h) | |
engine.dispose() | |
except Exception as e: | |
self.logger.log.error('Error recuperando de la base de datos') | |
self.logger.log.error(e) | |
raise e | |
self.logger.close() | |
return self.dtf |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
You are a legend