Created
December 11, 2024 07:06
-
-
Save vejvarm/52e93d2d8a9b98cd317a1e85d61928f1 to your computer and use it in GitHub Desktop.
exec eval using RDFlib and multiprocessing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import os | |
import re | |
import sqlite3 | |
import asyncio | |
import multiprocessing | |
from typing import Tuple, Any, List, Set | |
from itertools import product, chain | |
from collections import defaultdict | |
from concurrent.futures import ProcessPoolExecutor # Use ProcessPoolExecutor instead of ThreadPoolExecutor | |
import tqdm | |
import random | |
import time | |
import pickle as pkl | |
import subprocess | |
from neo4j.time import DateTime, Date, Time | |
from rdflib import Graph | |
from .parse import get_all_preds_for_execution, remove_distinct | |
# threadLock = threading.Lock() # Not needed or not effective across processes | |
TIMEOUT = 60 | |
EXEC_TMP_DIR = os.path.join(os.path.dirname(__file__), "tmp") | |
DATATYPES = { | |
float: ["http://www.w3.org/2001/XMLSchema#decimal", "http://www.w3.org/2001/XMLSchema#float", "http://www.w3.org/2001/XMLSchema#double"], | |
int: ["http://www.w3.org/2001/XMLSchema#integer", "http://www.w3.org/2001/XMLSchema#long", "http://www.w3.org/2001/XMLSchema#int"], | |
bool: ["http://www.w3.org/2001/XMLSchema#boolean"], | |
str: ["http://www.w3.org/2001/XMLSchema#string"], | |
"dateTime": ["http://www.w3.org/2001/XMLSchema#dateTime"], | |
"date": ["http://www.w3.org/2001/XMLSchema#date"], | |
"time": ["http://www.w3.org/2001/XMLSchema#time"], | |
} | |
def permute_tuple(element: Tuple, perm: Tuple) -> Tuple: | |
assert len(element) == len(perm) | |
return tuple([element[i] for i in perm]) | |
def unorder_row(row: Tuple) -> Tuple: | |
return tuple(sorted(row, key=lambda x: str(x) + str(type(x)))) | |
def quick_rej(result1: List[Tuple], result2: List[Tuple], order_matters: bool) -> bool: | |
s1 = [unorder_row(row) for row in result1] | |
s2 = [unorder_row(row) for row in result2] | |
if order_matters: | |
return s1 == s2 | |
else: | |
return set(s1) == set(s2) | |
def multiset_eq(l1: List, l2: List) -> bool: | |
if len(l1) != len(l2): | |
return False | |
d = defaultdict(int) | |
for e in l1: | |
d[e] += 1 | |
for e in l2: | |
d[e] -= 1 | |
if d[e] < 0: | |
return False | |
return True | |
def get_constraint_permutation(tab1_sets_by_columns: List[Set], result2: List[Tuple]): | |
num_cols = len(result2[0]) | |
perm_constraints = [{i for i in range(num_cols)} for _ in range(num_cols)] | |
if num_cols <= 3: | |
return product(*perm_constraints) | |
# we sample 20 rows and constrain the space of permutations | |
for _ in range(20): | |
random_tab2_row = random.choice(result2) | |
for tab1_col in range(num_cols): | |
for tab2_col in set(perm_constraints[tab1_col]): | |
if random_tab2_row[tab2_col] not in tab1_sets_by_columns[tab1_col]: | |
perm_constraints[tab1_col].remove(tab2_col) | |
return product(*perm_constraints) | |
def result_eq(result1: List[Tuple], result2: List[Tuple], order_matters: bool) -> bool: | |
if len(result1) == 0 and len(result2) == 0: | |
return True | |
if len(result1) != len(result2): | |
return False | |
num_cols = len(result1[0]) | |
if len(result2[0]) != num_cols: | |
return False | |
if not quick_rej(result1, result2, order_matters): | |
return False | |
tab1_sets_by_columns = [{row[i] for row in result1} for i in range(num_cols)] | |
for perm in get_constraint_permutation(tab1_sets_by_columns, result2): | |
if len(perm) != len(set(perm)): | |
continue | |
if num_cols == 1: | |
result2_perm = result2 | |
else: | |
result2_perm = [permute_tuple(element, perm) for element in result2] | |
if order_matters: | |
if result1 == result2_perm: | |
return True | |
else: | |
if set(result1) == set(result2_perm) and multiset_eq(result1, result2_perm): | |
return True | |
return False | |
def replace_cur_year(query: str) -> str: | |
return re.sub( | |
"YEAR\s*\(\s*CURDATE\s*\(\s*\)\s*\)\s*", "2020", query, flags=re.IGNORECASE | |
) | |
def get_cursor_from_path(sqlite_path: str): | |
try: | |
if not os.path.exists(sqlite_path): | |
print("Openning a new connection %s" % sqlite_path) | |
connection = sqlite3.connect(sqlite_path) | |
except Exception as e: | |
print(sqlite_path) | |
raise e | |
connection.text_factory = lambda b: b.decode(errors="ignore") | |
cursor = connection.cursor() | |
return cursor | |
async def exec_on_db_(sqlite_path: str, query: str) -> Tuple[str, Any]: | |
query = replace_cur_year(query) | |
cursor = get_cursor_from_path(sqlite_path) | |
try: | |
cursor.execute(query) | |
result = cursor.fetchall() | |
cursor.close() | |
cursor.connection.close() | |
return "result", result | |
except Exception as e: | |
cursor.close() | |
cursor.connection.close() | |
return "exception", e | |
def convert_rdflib_value(value, datatype, var_name): | |
if value == "0" and "aggregation" in var_name: | |
return None | |
if datatype in DATATYPES[float]: | |
return float(value) | |
if datatype in DATATYPES[int]: | |
return int(value) | |
if datatype in DATATYPES[bool]: | |
return value.lower() == 'true' | |
if datatype in DATATYPES[str]: | |
return str(value) | |
if datatype in DATATYPES["dateTime"]: | |
return DateTime.fromisoformat(value) | |
if datatype in DATATYPES["date"]: | |
return Date.fromisoformat(value) | |
if datatype in DATATYPES["time"]: | |
return Time.fromisoformat(value) | |
return value | |
def _transform_rdflib_result(rdflib_json): | |
rdflib_data = json.loads(rdflib_json) | |
bindings = rdflib_data["results"]["bindings"] | |
vars = rdflib_data["head"]["vars"] | |
transformed_results = [] | |
for binding in bindings: | |
transformed_entry = {} | |
for var in vars: | |
if var not in binding.keys(): | |
transformed_entry[var] = None | |
continue | |
data = binding[var] | |
value = data["value"] | |
datatype = data.get("datatype") | |
if datatype: | |
transformed_entry[var] = convert_rdflib_value(value, datatype, var) | |
else: | |
transformed_entry[var] = value | |
transformed_results.append(transformed_entry) | |
values_only = [tuple(e.values()) for e in transformed_results] | |
return values_only | |
def exec_sparql_sync(kg_path: str, query: str): | |
graph = Graph() | |
graph.parse(kg_path, format="ttl") | |
result = graph.query(query) | |
graph.close() | |
return result | |
async def exec_sparql_on_db_(kg_path: str, query: str) -> Tuple[str, Any]: | |
loop = asyncio.get_event_loop() | |
try: | |
# Use ProcessPoolExecutor for multiprocessing | |
with ProcessPoolExecutor() as executor: | |
result = await loop.run_in_executor(executor, exec_sparql_sync, kg_path, query) | |
result_serialized = result.serialize(format='json').decode('utf-8') | |
print("\tdone") | |
return "result", _transform_rdflib_result(result_serialized) | |
except Exception as e: | |
return "exception", e | |
async def exec_on_db( | |
db_path: str, query: str, process_id: str = "", timeout: int = TIMEOUT, lang: str = "sql" | |
) -> Tuple[str, Any]: | |
try: | |
if "sql" in lang: | |
return await asyncio.wait_for(exec_on_db_(db_path, query), timeout) | |
elif "sparql" in lang: | |
print("executing sparql") | |
return await asyncio.wait_for(exec_sparql_on_db_(db_path, query), timeout) | |
except asyncio.TimeoutError: | |
return ('exception', TimeoutError) | |
except Exception as e: | |
return ("exception", e) | |
def postprocess(query: str) -> str: | |
query = query.replace("> =", ">=").replace("< =", "<=").replace("! =", "!=") | |
return query | |
def eval_exec_match( | |
db: str, | |
p_str: str, | |
g_str: str, | |
plug_value: bool, | |
keep_distinct: bool, | |
progress_bar_for_each_datapoint: bool, | |
lang = "sql", | |
) -> int: | |
p_str, g_str = postprocess(p_str), postprocess(g_str) | |
if not keep_distinct: | |
try: | |
p_str = remove_distinct(p_str) | |
except Exception as e: | |
return 0 | |
g_str = remove_distinct(g_str) | |
order_matters = "order by" in g_str.lower() | |
ext_map = {"sql": ".sqlite", | |
"sparql": ".ttl", | |
"cypher": ".ttl"} | |
db_dir = os.path.dirname(db) | |
db_paths = [ | |
os.path.join(db_dir, basename) | |
for basename in os.listdir(db_dir) | |
if basename.endswith(ext_map[lang]) | |
] | |
preds = [p_str] | |
if plug_value: | |
_, preds_from_gold = get_all_preds_for_execution(g_str, p_str) | |
preds = chain([p_str], preds_from_gold) | |
for pred in preds: | |
pred_passes = 1 | |
ranger = tqdm.tqdm(db_paths) if progress_bar_for_each_datapoint else db_paths | |
for db_path in ranger: | |
g_flag, g_denotation = asyncio.run(exec_on_db(db_path, g_str, lang=lang)) | |
p_flag, p_denotation = asyncio.run(exec_on_db(db_path, pred, lang=lang)) | |
assert g_flag != "exception", f"gold query {g_str} has error {g_denotation} on database file {db_path}" | |
if p_flag == "exception": | |
pred_passes = 0 | |
elif not result_eq(g_denotation, p_denotation, order_matters=order_matters): | |
pred_passes = 0 | |
if pred_passes == 0: | |
break | |
if pred_passes == 1: | |
return 1 | |
return 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment