Forked from mbostock's Solar Terminator, and added a zoom feature from mbostock's Constrained Zoom.
-
-
Save vertighel/5001214 to your computer and use it in GitHub Desktop.
Solar Terminator with Zoom
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<style> | |
svg{ | |
border: 1px dashed gray; | |
} | |
.overlay { | |
fill: none; | |
pointer-events: all; | |
} | |
.night { | |
stroke: steelblue; | |
fill: steelblue; | |
fill-opacity: .3; | |
} | |
.land{ | |
fill: rgba(0,50,0,0.9); | |
} | |
</style> | |
<body> | |
<script src="http://d3js.org/d3.v3.min.js"></script> | |
<script src="http://d3js.org/d3.geo.projection.v0.min.js"></script> | |
<script src="http://d3js.org/topojson.v0.min.js"></script> | |
<script> | |
var width = 960, | |
height = 500; | |
var π = Math.PI, | |
radians = π / 180, | |
degrees = 180 / π; | |
var projection = d3.geo.equirectangular() | |
.translate([0,0]) | |
// .parallel(38.5) | |
.scale(width/7) | |
// .precision(.1); | |
var circle = d3.geo.circle() | |
.angle(90); | |
var zoom = d3.behavior.zoom() | |
.scaleExtent([1, 400]) | |
.on("zoom", move); | |
var path = d3.geo.path() | |
.projection(projection); | |
var svg = d3.select("body").append("svg") | |
.attr("width", width) | |
.attr("height", height) | |
.append("g") | |
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")") | |
.call(zoom); | |
var g = svg.append("g"); | |
svg.append("rect") | |
.attr("class", "overlay") | |
.attr("x", -width / 2) | |
.attr("y", -height / 2) | |
.attr("width", width) | |
.attr("height", height); | |
//d3.json("./world-50m.json", function(error, world) { | |
d3.json("/d/4090846/world-50m.json", function(error, world) { | |
g.append("path") | |
.datum(topojson.object(world, world.objects.land)) | |
.attr("class", "land") | |
.attr("d", path); | |
var night = g.append("path") | |
.attr("class", "night") | |
.attr("d", path); | |
redraw(); | |
setInterval(redraw, 1000); | |
function redraw() { | |
night.datum(circle.origin(antipode(solarPosition(new Date)))).attr("d", path); | |
} | |
}); | |
function move() { | |
var t = d3.event.translate, | |
s = d3.event.scale; | |
t[0] = Math.min(width / 2 * (s - 1), Math.max(width / 2 * (1 - s), t[0])); | |
t[1] = Math.min(height / 2 * (s - 1) + 230 * s, Math.max(height / 2 * (1 - s) - 230 * s, t[1])); | |
zoom.translate(t); | |
g.style("stroke-width", 1 / s).attr("transform", "translate(" + t + ")scale(" + s + ")"); | |
} | |
function antipode(position) { | |
return [position[0] + 180, -position[1]]; | |
} | |
function solarPosition(time) { | |
var centuries = (time - Date.UTC(2000, 0, 1, 12)) / 864e5 / 36525, // since J2000 | |
longitude = (d3.time.day.utc.floor(time) - time) / 864e5 * 360 - 180; | |
return [ | |
longitude - equationOfTime(centuries) * degrees, | |
solarDeclination(centuries) * degrees | |
]; | |
} | |
// Equations based on NOAA’s Solar Calculator; all angles in radians. | |
// http://www.esrl.noaa.gov/gmd/grad/solcalc/ | |
function equationOfTime(centuries) { | |
var e = eccentricityEarthOrbit(centuries), | |
m = solarGeometricMeanAnomaly(centuries), | |
l = solarGeometricMeanLongitude(centuries), | |
y = Math.tan(obliquityCorrection(centuries) / 2); | |
y *= y; | |
return y * Math.sin(2 * l) | |
- 2 * e * Math.sin(m) | |
+ 4 * e * y * Math.sin(m) * Math.cos(2 * l) | |
- 0.5 * y * y * Math.sin(4 * l) | |
- 1.25 * e * e * Math.sin(2 * m); | |
} | |
function solarDeclination(centuries) { | |
return Math.asin(Math.sin(obliquityCorrection(centuries)) * Math.sin(solarApparentLongitude(centuries))); | |
} | |
function solarApparentLongitude(centuries) { | |
return solarTrueLongitude(centuries) - (0.00569 + 0.00478 * Math.sin((125.04 - 1934.136 * centuries) * radians)) * radians; | |
} | |
function solarTrueLongitude(centuries) { | |
return solarGeometricMeanLongitude(centuries) + solarEquationOfCenter(centuries); | |
} | |
function solarGeometricMeanAnomaly(centuries) { | |
return (357.52911 + centuries * (35999.05029 - 0.0001537 * centuries)) * radians; | |
} | |
function solarGeometricMeanLongitude(centuries) { | |
var l = (280.46646 + centuries * (36000.76983 + centuries * 0.0003032)) % 360; | |
return (l < 0 ? l + 360 : l) / 180 * π; | |
} | |
function solarEquationOfCenter(centuries) { | |
var m = solarGeometricMeanAnomaly(centuries); | |
return (Math.sin(m) * (1.914602 - centuries * (0.004817 + 0.000014 * centuries)) | |
+ Math.sin(m + m) * (0.019993 - 0.000101 * centuries) | |
+ Math.sin(m + m + m) * 0.000289) * radians; | |
} | |
function obliquityCorrection(centuries) { | |
return meanObliquityOfEcliptic(centuries) + 0.00256 * Math.cos((125.04 - 1934.136 * centuries) * radians) * radians; | |
} | |
function meanObliquityOfEcliptic(centuries) { | |
return (23 + (26 + (21.448 - centuries * (46.8150 + centuries * (0.00059 - centuries * 0.001813))) / 60) / 60) * radians; | |
} | |
function eccentricityEarthOrbit(centuries) { | |
return 0.016708634 - centuries * (0.000042037 + 0.0000001267 * centuries); | |
} | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment