Last active
November 23, 2021 15:32
-
-
Save vfdev-5/8c26a109d7718035162a6d5d138b5499 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import PIL | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
import torch.utils.benchmark as benchmark | |
import torchvision | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as F | |
import torchvision.io as io | |
isize = 500 | |
osize = 224 | |
mean = (0.1, 0.1, 0.1) | |
std = (0.2, 0.2, 0.2) | |
img_path = Path(f"test_{isize}.jpg") | |
def pil_loader(path): | |
with open(path, 'rb') as f: | |
with Image.open(f) as img: | |
return img.convert('RGB') | |
def torch_loader(path): | |
mode = io.ImageReadMode.RGB | |
return io.read_image(path, mode) | |
transforms = [ | |
(pil_loader, f"PIL->Resize ({isize}->{osize}) ->Tensor->Norm", T.Compose([ | |
T.Resize((osize, osize)), T.ToTensor(), T.Normalize(mean, std) | |
])), | |
(pil_loader, f"PIL->Tensor->Resize ({isize}->{osize}) ->Norm", T.Compose([ | |
T.ToTensor(), T.Resize((osize, osize)), T.Normalize(mean, std) | |
])), | |
(torch_loader, f"PTH->DType->Resize ({isize}->{osize}) ->Norm", nn.Sequential( | |
T.ConvertImageDtype(torch.float), T.Resize((osize, osize)), T.Normalize(mean, std) | |
)), | |
(torch_loader, f"JIT: PTH->DType->Resize ({isize}->{osize}) ->Norm", torch.jit.script(nn.Sequential( | |
T.ConvertImageDtype(torch.float), T.Resize((osize, osize)), T.Normalize(mean, std) | |
))), | |
] | |
def run_bench(t): | |
min_run_time = 3 | |
reader_fn, label, transform = t | |
results = [] | |
for i in [1, 6]: | |
torch.set_num_threads(i) | |
results += [ | |
benchmark.Timer( | |
stmt=f"transform( read('{img_path.as_posix()}') )", | |
globals={ | |
"read": reader_fn, | |
"transform": transform, | |
}, | |
num_threads=torch.get_num_threads(), | |
label="Benchmark reader+transformation", | |
description="Time", | |
sub_label=label, | |
).blocked_autorange(min_run_time=min_run_time), | |
] | |
return results | |
def main(): | |
all_results = [] | |
for t in transforms: | |
all_results += run_bench(t) | |
compare = benchmark.Compare(all_results) | |
compare.print() | |
def write_random_image(path, size=64, num_channels=3): | |
shape = [num_channels, size, size] | |
tensor = torch.randint(0, 256, size=shape, dtype=torch.uint8) | |
data = tensor.permute(1, 2, 0).contiguous().cpu().numpy() | |
pil_img = Image.fromarray(data) | |
pil_img = pil_img.convert("RGB") | |
pil_img.save(path) | |
assert Path(path).exists(), path | |
if __name__ == "__main__": | |
print(f"Torch config: {torch.__config__.show()}") | |
print(f"Torch version: {torch.__version__}") | |
print(f"Torchvision version: {torchvision.__version__}") | |
print(f"PIL version: {PIL.__version__}") | |
if not img_path.exists(): | |
write_random_image(img_path, size=isize) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment