-
-
Save vgoklani/3437355 to your computer and use it in GitHub Desktop.
Sklearn GridSearchCV vs. CrossValidation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import SGDClassifier | |
from sklearn import cross_validation | |
from sklearn import metrics | |
from sklearn.grid_search import GridSearchCV | |
from sklearn.datasets import load_iris | |
data = load_iris() | |
sample_vector = data.data | |
targets = data.target | |
cv = cross_validation.StratifiedKFold(targets, 10) | |
score_func = metrics.f1_score | |
parameters = { | |
'seed': [0], | |
'loss': ('log', 'hinge'), | |
'penalty': ['l1', 'l2', 'elasticnet'], | |
'alpha': [0.001, 0.0001, 0.00001, 0.000001] | |
} | |
print "GRID SEARCH:" | |
grid_search = GridSearchCV(SGDClassifier(), parameters, | |
score_func=score_func, cv=cv) | |
grid_search.fit(sample_vector, targets) | |
print "Best %s: %0.3f" % (score_func.__name__, grid_search.best_score_) | |
print "Best parameters set:" | |
best_parameters = grid_search.best_estimator_.get_params() | |
for param_name in sorted(parameters.keys()): | |
print "\t%s: %r" % (param_name, best_parameters[param_name]) | |
print "CROSS VALIDATION:" | |
clf = SGDClassifier(**best_parameters) | |
scores = cross_validation.cross_val_score(clf, sample_vector, targets, | |
cv=cv, score_func=score_func) | |
print 'Best %s: %0.2f (+/- %0.2f)' % \ | |
(score_func.__name__, scores.mean(), scores.std() / 2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment