-
-
Save vgoklani/3c8ce5a91a0260e0cd1081e1a6f8f01f to your computer and use it in GitHub Desktop.
Tensorflow RNN-LSTM implementation to count number of set bits in a binary string
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
import numpy as np | |
import random | |
from random import shuffle | |
import tensorflow as tf | |
from tensorflow.models.rnn import rnn_cell | |
from tensorflow.models.rnn import rnn | |
NUM_EXAMPLES = 10000 | |
train_input = ['{0:020b}'.format(i) for i in range(2**20)] | |
shuffle(train_input) | |
train_input = [map(int,i) for i in train_input] | |
ti = [] | |
for i in train_input: | |
temp_list = [] | |
for j in i: | |
temp_list.append([j]) | |
ti.append(np.array(temp_list)) | |
train_input = ti | |
train_output = [] | |
for i in train_input: | |
count = 0 | |
for j in i: | |
if j[0] == 1: | |
count+=1 | |
temp_list = ([0]*21) | |
temp_list[count]=1 | |
train_output.append(temp_list) | |
test_input = train_input[NUM_EXAMPLES:] | |
test_output = train_output[NUM_EXAMPLES:] | |
train_input = train_input[:NUM_EXAMPLES] | |
train_output = train_output[:NUM_EXAMPLES] | |
print "test and training data loaded" | |
data = tf.placeholder(tf.float32, [None, 20,1]) #Number of examples, number of input, dimension of each input | |
target = tf.placeholder(tf.float32, [None, 21]) | |
num_hidden = 24 | |
cell = rnn_cell.LSTMCell(num_hidden) | |
val, _ = rnn.dynamic_rnn(cell, data, dtype=tf.float32) | |
val = tf.transpose(val, [1, 0, 2]) | |
last = tf.gather(val, int(val.get_shape()[0]) - 1) | |
weight = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()[1])])) | |
bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]])) | |
prediction = tf.nn.softmax(tf.matmul(last, weight) + bias) | |
cross_entropy = -tf.reduce_sum(target * tf.log(prediction)) | |
optimizer = tf.train.AdamOptimizer() | |
minimize = optimizer.minimize(cross_entropy) | |
mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) | |
error = tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
init_op = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init_op) | |
batch_size = 1000 | |
no_of_batches = int(len(train_input)) / batch_size | |
epoch = 5000 | |
for i in range(epoch): | |
ptr = 0 | |
for j in range(no_of_batches): | |
inp, out = train_input[ptr:ptr+batch_size], train_output[ptr:ptr+batch_size] | |
ptr+=batch_size | |
sess.run(minimize,{data: inp, target: out}) | |
print "Epoch ",str(i) | |
incorrect = sess.run(error,{data: test_input, target: test_output}) | |
print sess.run(prediction,{data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]}) | |
print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect)) | |
sess.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment