-
-
Save vgoklani/f0f41ac5c4e7496d44e08cd4d739100d to your computer and use it in GitHub Desktop.
MLX ResNet18 Inference Benchmark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from huggingface_hub import snapshot_download | |
import mlx.core as mx | |
import mlx.nn as nn | |
import time | |
class Block(nn.Module): | |
def __init__(self, in_dims, dims, stride=1): | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm(dims) | |
self.conv2 = nn.Conv2d( | |
dims, dims, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm(dims) | |
self.downsample = [] | |
if stride != 1: | |
self.downsample = [ | |
nn.Conv2d(in_dims, dims, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm(dims) | |
] | |
def __call__(self, x): | |
out = nn.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
for l in self.downsample: | |
x = l(x) | |
out += x | |
out = nn.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, num_blocks, num_classes=10): | |
super().__init__() | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm(64) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, 64, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, 64, 128, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, 128, 256, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, 256, 512, num_blocks[3], stride=2) | |
self.fc = nn.Linear(512, num_classes) | |
def _make_layer(self, block, in_dims, dims, num_blocks, stride): | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(in_dims, dims, stride)) | |
in_dims = dims | |
return layers | |
def __call__(self, x): | |
x = nn.relu(self.bn1(self.conv1(x))) | |
x = self.maxpool(x) | |
for l in self.layer1 + self.layer2 + self.layer3 + self.layer4: | |
x = l(x) | |
x = mx.mean(x, axis=[1, 2]) | |
x = self.fc(x) | |
return x | |
def load(): | |
model = ResNet(Block, [2, 2, 2, 2], num_classes=1000) | |
file = "model.safetensors" | |
model_path = snapshot_download( | |
repo_id="awni/resnet18-mlx", | |
allow_patterns=[file], | |
) | |
model.load_weights(model_path + "/" + file) | |
model.eval() | |
mx.eval(model) | |
return model | |
if __name__ == "__main__": | |
resnet18 = load() | |
@mx.compile | |
def forward(im): | |
return resnet18(im) | |
batch_sizes = [1, 2, 4, 8, 16, 32, 64] | |
print(f"Batch Size | Images-per-second | Milliseconds-per-image") | |
print(f"---- | ---- | ---- ") | |
for N in batch_sizes: | |
image = mx.random.uniform(shape=(N, 288, 288, 3)) | |
# Warmup | |
for _ in range(5): | |
output = forward(image) | |
mx.eval(output) | |
tic = time.time() | |
its = 200 | |
for _ in range(its): | |
output = forward(image) | |
mx.async_eval(output) | |
mx.eval(output) | |
toc = time.time() | |
ims_per_sec = N * its / (toc - tic) | |
ms_per_im = 1e3 / ims_per_sec | |
print(f"{N} | {ims_per_sec:.3f} | {ms_per_im:.3f}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment