Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save vhsu/9cf41e82281b8d6dae2197369a7f5851 to your computer and use it in GitHub Desktop.
Save vhsu/9cf41e82281b8d6dae2197369a7f5851 to your computer and use it in GitHub Desktop.
mnist-example.ipynb
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyMr5e9IsCxg3q+sApsIAZ0/",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/vhsu/9cf41e82281b8d6dae2197369a7f5851/untitled0.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "oREhOigP8lDt",
"outputId": "b8030cb6-47db-4942-b79b-cb5526fdd9d6"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8440 - loss: 0.5319 - val_accuracy: 0.9548 - val_loss: 0.1608\n",
"Epoch 2/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 5ms/step - accuracy: 0.9499 - loss: 0.1665 - val_accuracy: 0.9645 - val_loss: 0.1194\n",
"Epoch 3/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9654 - loss: 0.1208 - val_accuracy: 0.9700 - val_loss: 0.1002\n",
"Epoch 4/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 5ms/step - accuracy: 0.9716 - loss: 0.0921 - val_accuracy: 0.9723 - val_loss: 0.0894\n",
"Epoch 5/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9746 - loss: 0.0803 - val_accuracy: 0.9730 - val_loss: 0.0882\n",
"Epoch 6/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9780 - loss: 0.0684 - val_accuracy: 0.9760 - val_loss: 0.0821\n",
"Epoch 7/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9825 - loss: 0.0584 - val_accuracy: 0.9764 - val_loss: 0.0777\n",
"Epoch 8/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9815 - loss: 0.0552 - val_accuracy: 0.9775 - val_loss: 0.0805\n",
"Epoch 9/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9836 - loss: 0.0494 - val_accuracy: 0.9771 - val_loss: 0.0802\n",
"Epoch 10/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9861 - loss: 0.0420 - val_accuracy: 0.9771 - val_loss: 0.0823\n",
"Epoch 11/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 5ms/step - accuracy: 0.9874 - loss: 0.0377 - val_accuracy: 0.9772 - val_loss: 0.0842\n",
"Epoch 12/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9882 - loss: 0.0336 - val_accuracy: 0.9788 - val_loss: 0.0797\n",
"Epoch 13/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.9887 - loss: 0.0325 - val_accuracy: 0.9792 - val_loss: 0.0827\n",
"Epoch 14/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9886 - loss: 0.0344 - val_accuracy: 0.9772 - val_loss: 0.0859\n",
"Epoch 15/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 5ms/step - accuracy: 0.9895 - loss: 0.0305 - val_accuracy: 0.9782 - val_loss: 0.0878\n",
"Epoch 16/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 5ms/step - accuracy: 0.9899 - loss: 0.0293 - val_accuracy: 0.9778 - val_loss: 0.0865\n",
"Epoch 17/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9922 - loss: 0.0253 - val_accuracy: 0.9795 - val_loss: 0.0851\n",
"Epoch 18/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9909 - loss: 0.0244 - val_accuracy: 0.9781 - val_loss: 0.0863\n",
"Epoch 19/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9915 - loss: 0.0295 - val_accuracy: 0.9773 - val_loss: 0.0940\n",
"Epoch 20/20\n",
"\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 6ms/step - accuracy: 0.9906 - loss: 0.0258 - val_accuracy: 0.9771 - val_loss: 0.0914\n",
"\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9768 - loss: 0.0942\n",
"Test accuracy: 0.9797999858856201\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqeElEQVR4nO3de1hVdb7H8c8WZYsKW5GQS4qImR1vnbFkTPOSJDDdvDSl1aRO5cmw4yXT6GRqWkyXx3Eqs3qmozmVXZzRLjPpeEk9M6E9WmnW5BHC1BRECzZCILF/5w8f92kLqHu74Qf4fj3Peh73Wr/vWt+9XPBh7b322g5jjBEAAPWsme0GAAAXJgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIdWLu3LlyOBw6evRo0NY5fvx4de7cOWjrawqWLVsmh8Ohffv2eecNGTJEQ4YMsdbT6Wrqsa5t2rRJDodDK1euDNo6bTyPpo4AqgcOh+Ocpk2bNlntc8iQIerZs6fVHupS586da9zv9957b9DWGR0drauvvlqrVq0KYud1r6ysTHPnzrV6DNbFHy0Nyfjx42s8/rp37267NWua227gQvCnP/3J5/Hy5cu1bt26avMvu+yy+mzrgnT55ZfrgQce8JnXrVu3oK3z0KFDeumllzRq1CgtWbLkvMItUH//+9/9rikrK9O8efMkqUGdPTU1TqdTf/zjH33muVwuS93YRwDVgzvuuMPn8datW7Vu3bpq809XVlamVq1a1WVrF5z4+Piz7vfzXeedd96prl276ve//32tAfTTTz/J4/EoNDQ0qL1IqpN1IjiaN28e9OOvMeMluAbi1MtfO3bs0KBBg9SqVSs9/PDDkk6+hDd37txqNZ07d9b48eN95hUVFWnq1Knq2LGjnE6nunbtqieffFIejycofe7atUvjx49Xly5d1LJlS8XExOi3v/2tjh07VuP4o0eP6pZbblFERITat2+vKVOmqLy8vNq41157TX379lVYWJgiIyM1ZswYHThw4Kz9HD58WF9//bUqKyvP+TmcOHFCpaWl5zzeXzExMbrsssuUl5cnSdq3b58cDoeeeeYZLVq0SElJSXI6nfrqq68kSV9//bVuvvlmRUZGqmXLlrriiiv03nvvVVvvl19+qWuuuUZhYWG6+OKLtWDBghr/X2t6D6i8vFxz585Vt27d1LJlS8XGxmrUqFHKzc3Vvn37dNFFF0mS5s2b531p6OfHXLB7DNT333+vGTNmqFevXmrTpo0iIiKUnp6unTt31ji+qqpKDz/8sGJiYtS6dWvdeOONNR5X27ZtU1pamlwul1q1aqXBgwfrn//851n7KS4u1tdff63i4uJzfg5VVVVyu93nPL4p4wyoATl27JjS09M1ZswY3XHHHerQoYNf9WVlZRo8eLC+++47/cd//Ic6deqkjz/+WJmZmTp8+LAWLVp03j2uW7dO33zzjSZMmKCYmBh9+eWXevnll/Xll19q69atcjgcPuNvueUWde7cWVlZWdq6daueffZZ/fDDD1q+fLl3zOOPP67Zs2frlltu0d13363CwkI999xzGjRokD777DO1bdu21n4yMzP16quvKi8v75wuUNi4caNatWqlqqoqJSQkaNq0aZoyZUqgu6NGlZWVOnDggNq3b+8zf+nSpSovL9fEiRPldDoVGRmpL7/8UgMGDFB8fLweeughtW7dWm+//bZGjBihP//5zxo5cqQkKT8/X0OHDtVPP/3kHffyyy8rLCzsrP1UVVXp+uuv14YNGzRmzBhNmTJFJSUlWrdunXbv3q2UlBQtWbJEkyZN0siRIzVq1ChJUu/evSWpXno8V998841Wr16tX//610pMTFRBQYFeeuklDR48WF999ZXi4uJ8xj/++ONyOByaNWuWjhw5okWLFiklJUWff/65t6+NGzcqPT1dffv21Zw5c9SsWTMtXbpU11xzjf7nf/5H/fr1q7WfVatWacKECVq6dGm1PwZrUlZWpoiICJWVlaldu3YaO3asnnzySbVp0+a89kujZVDvMjIyzOm7fvDgwUaSefHFF6uNl2TmzJlTbX5CQoIZN26c9/H8+fNN69atzf/+7//6jHvooYdMSEiI2b9//xn7Gjx4sOnRo8cZx5SVlVWbt2LFCiPJbNmyxTtvzpw5RpK58cYbfcbed999RpLZuXOnMcaYffv2mZCQEPP444/7jPviiy9M8+bNfeaPGzfOJCQk+IwbN26ckWTy8vLO2Lcxxtxwww3mySefNKtXrzavvPKKufrqq40kM3PmzLPW1iYhIcEMHz7cFBYWmsLCQrNz504zZswYI8ncf//9xhhj8vLyjCQTERFhjhw54lM/bNgw06tXL1NeXu6d5/F4zFVXXWUuueQS77ypU6caSWbbtm3eeUeOHDEul6va8x88eLAZPHiw9/F///d/G0lm4cKF1fr3eDzGGGMKCwtrPc7qoseanDpmCgsLax1TXl5uqqqqfObl5eUZp9NpHnvsMe+8jz76yEgy8fHxxu12e+e//fbbRpL5wx/+4H0el1xyiUlNTfXuC2NOHueJiYnm2muv9c5bunRptedxat7SpUvP+NyMOflzOGvWLPPWW2+ZFStWeI/dAQMGmMrKyrPWN0UEkAW1BZDT6TQVFRXVxp9rAPXu3dukpaV5fxmemtavX28kmddee+2MfZ1LAP3cjz/+aAoLC72/YBctWuRdduqXydq1a31q/vWvfxlJJisryxhjzMKFC43D4TB79+6t1vdll11mUlJSvLU1BdD58Hg8JjU11TRv3twcOHAgoHUkJCQYST5TSEiI+c1vfuMN61P7Z8KECT61x44dMw6Hw8yfP7/ac583b56RZA4ePGiMMaZbt27ml7/8ZbXtnwr0MwXQddddZ6Kios74S662AKqrHmtyLgH0cz/99JM5evSoKSwsNL179zYjRozwLjsVQJmZmT41Ho/HxMbGmtTUVGOMMZ9++qmRZF599dVqz+/uu+82TqfTG3g1BdD5evzxx40ks2LFiqCtszHhJbgGJD4+/rzeQN67d6927drlfT3/dEeOHAl43ad8//33mjdvnt58881q66vpdfBLLrnE53FSUpKaNWvm/SzF3r17ZYypNu6UFi1anHfPtXE4HJo2bZrWrl2rTZs2BfzmcHJyshYsWCCHw6FWrVrpsssuq/Flw8TERJ/HOTk5MsZo9uzZmj17do3rPnLkiOLj4/Xtt98qOTm52vJLL730rP3l5ubq0ksvVfPm/v+411eP58rj8egPf/iDXnjhBeXl5amqqsq77PSXPKXqx5/D4VDXrl19jj9JGjduXK3bLC4uVrt27YLQfXXTpk3T7NmztX79eo0ZM6ZOttGQEUANiL+vlf/8h086+cN57bXXaubMmTWOP9/LjaWT7+l8/PHHevDBB3X55ZerTZs28ng8SktLO6c3m09/j8jj8cjhcOjDDz9USEhItfF1/dp4x44dJZ0M1kBFRUUpJSXlrONO//89tb9mzJih1NTUGmu6du0acF/B0NB6fOKJJzR79mz99re/1fz58xUZGalmzZpp6tSpAV3scKrm6aef1uWXX17jmLo8BsPCwtS+ffvzOv4aMwKoEWjXrp2Kiop85p04cUKHDx/2mZeUlKTjx4+f0y/DQPzwww/asGGD5s2bp0cffdQ7/9RfkTXZu3evz1/+OTk58ng83gsGkpKSZIxRYmJiUALSX998840k1XrWWJe6dOki6eRZ3tn+zxISEmrcz3v27DnrdpKSkrRt2zZVVlbWekZ5+h8G9d3juVq5cqWGDh2qV155xWd+UVGRoqKiqo0/vR9jjHJycrwXWCQlJUmSIiIi6uzn5kxKSkp09OhRK8dfQ8Bl2I1AUlKStmzZ4jPv5ZdfrnYGdMsttyg7O1tr166tto6ioiL99NNP59XHqTMUY4zP/DNdXbd48WKfx88995wkKT09XZI0atQohYSEaN68edXWa4yp9fLuU871Muzvv/++2v6qrKzU7373O4WGhmro0KFnrK8L0dHRGjJkiF566aVqf0xIUmFhofffv/rVr7R161Z98sknPstff/31s25n9OjROnr0qJ5//vlqy07t81OfNzv9D5366vFchYSEVDtO3nnnHX333Xc1jl++fLlKSkq8j1euXKnDhw97j7++ffsqKSlJzzzzjI4fP16t/ufPrybnehl2eXm5Tx+nzJ8/X8YYpaWlnbG+qeIMqBG4++67de+992r06NG69tprtXPnTq1du7baX3wPPvig3nvvPV1//fUaP368+vbtq9LSUn3xxRdauXKl9u3bV+NfiT9XWFioBQsWVJufmJio22+/XYMGDdJTTz2lyspKxcfH6+9//7v38y41ycvL04033qi0tDRlZ2frtdde02233aY+ffpIOhmuCxYsUGZmpvbt26cRI0YoPDxceXl5WrVqlSZOnKgZM2bUuv5zvQz7vffe04IFC3TzzTcrMTFR33//vd544w3t3r1bTzzxhGJiYrxj9+3bp8TERI0bN07Lli074/46X4sXL9bAgQPVq1cv3XPPPerSpYsKCgqUnZ2tgwcPej/fMnPmTP3pT39SWlqapkyZ4r3EOSEhQbt27TrjNu68804tX75c06dP1yeffKKrr75apaWlWr9+ve677z7ddNNNCgsL07/927/prbfeUrdu3RQZGamePXuqZ8+e9dLjzy1cuLDaB7CbNWumhx9+WNdff70ee+wxTZgwQVdddZW++OILvf76694ztdNFRkZq4MCBmjBhggoKCrRo0SJ17dpV99xzj3e9f/zjH5Wenq4ePXpowoQJio+P13fffaePPvpIERERev/992vt9Vwvw87Pz9e///u/a+zYsd5b76xdu1Z/+9vflJaWpptuuumc90+TYunihwtabVfB1XYFWlVVlZk1a5aJiooyrVq1MqmpqSYnJ6faVXDGGFNSUmIyMzNN165dTWhoqImKijJXXXWVeeaZZ8yJEyfO2NepS8FrmoYNG2aMMebgwYNm5MiRpm3btsblcplf//rX5tChQ9WuoDp1RdNXX31lbr75ZhMeHm7atWtnJk+ebH788cdq2/7zn/9sBg4caFq3bm1at25tunfvbjIyMsyePXu8Y87nMuzt27ebG264wcTHx5vQ0FDTpk0bM3DgQPP2229XG/vFF18YSeahhx464zqNOXkV3HXXXXfGMaeugnv66adrXJ6bm2vuvPNOExMTY1q0aGHi4+PN9ddfb1auXOkzbteuXWbw4MGmZcuWJj4+3syfP9+88sorZ70KzpiTlxX/13/9l0lMTDQtWrQwMTEx5uabbza5ubneMR9//LHp27evCQ0Nrfb/Gewea3LqmKlpCgkJMcacvAz7gQceMLGxsSYsLMwMGDDAZGdnV3vOp66CW7FihcnMzDTR0dEmLCzMXHfddebbb7+ttu3PPvvMjBo1yrRv3944nU6TkJBgbrnlFrNhwwbvmPO5DPuHH34wd9xxh+natatp1aqVcTqdpkePHuaJJ544689lU+Yw5rTzWeAC98ILL2jmzJnKzc31+8PAAM4d7wEBp/noo4/0n//5n4QPUMc4AwIAWMEZEADACgIIAGAFAQQAsIIAAgBY0eA+iOrxeHTo0CGFh4fXensQAEDDZYxRSUmJ4uLi1KxZ7ec5DS6ADh065L1BJACg8Tpw4IAuvvjiWpc3uJfgwsPDbbcAAAiCs/0+r7MAWrx4sTp37qyWLVsqOTnZ5waFZ8LLbgDQNJzt93mdBNBbb72l6dOna86cOfr000/Vp08fpaamBuUL0QAATURd3GCuX79+JiMjw/u4qqrKxMXFeb+G+UyKi4trvSEhExMTE1PjmYqLi8/4+z7oZ0AnTpzQjh07fL7cqVmzZkpJSVF2dna18RUVFXK73T4TAKDpC3oAHT16VFVVVdVu5NihQwfl5+dXG5+VlSWXy+WduAIOAC4M1q+Cy8zMVHFxsXc6cOCA7ZYAAPUg6J8DioqKUkhIiAoKCnzmFxQU+Hzr5ClOp1NOpzPYbQAAGrignwGFhoaqb9++2rBhg3eex+PRhg0b1L9//2BvDgDQSNXJnRCmT5+ucePG6YorrlC/fv20aNEilZaWasKECXWxOQBAI1QnAXTrrbeqsLBQjz76qPLz83X55ZdrzZo1fMMkAMCrwX0jqtvtlsvlst0GAOA8FRcXKyIiotbl1q+CAwBcmAggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsCHoAzZ07Vw6Hw2fq3r17sDcDAGjkmtfFSnv06KH169f//0aa18lmAACNWJ0kQ/PmzRUTE1MXqwYANBF18h7Q3r17FRcXpy5duuj222/X/v37ax1bUVEht9vtMwEAmr6gB1BycrKWLVumNWvWaMmSJcrLy9PVV1+tkpKSGsdnZWXJ5XJ5p44dOwa7JQBAA+Qwxpi63EBRUZESEhK0cOFC3XXXXdWWV1RUqKKiwvvY7XYTQgDQBBQXFysiIqLW5XV+dUDbtm3VrVs35eTk1Ljc6XTK6XTWdRsAgAamzj8HdPz4ceXm5io2NrauNwUAaESCHkAzZszQ5s2btW/fPn388ccaOXKkQkJCNHbs2GBvCgDQiAX9JbiDBw9q7NixOnbsmC666CINHDhQW7du1UUXXRTsTQEAGrE6vwjBX263Wy6Xy3YbAIDzdLaLELgXHADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGBFc9sNABeitm3b+l3z5JNP+l3zxRdf+F0jSc8//3xAdYA/OAMCAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACscxhhju4mfc7vdcrlcttsAzlnXrl39rvnkk0/8rgnkBqaB/nifOHHC75rjx4/7XfPOO+/4XfP+++/7XbNt2za/ayTp+++/D6gOJxUXFysiIqLW5ZwBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAV3IwU+JmBAwf6XbN69Wq/ayIjI/2uCcTOnTsDquvTp4/fNQ6Hw++a+vr18+OPPwZUV1VV5XfNN99843fN9u3b/a7xeDx+10jS888/73fNrl27AtoWNyMFADRIBBAAwAq/A2jLli264YYbFBcXJ4fDUe3lB2OMHn30UcXGxiosLEwpKSnau3dvsPoFADQRfgdQaWmp+vTpo8WLF9e4/KmnntKzzz6rF198Udu2bVPr1q2Vmpqq8vLy824WANB0NPe3ID09Xenp6TUuM8Zo0aJFeuSRR3TTTTdJkpYvX64OHTpo9erVGjNmzPl1CwBoMoL6HlBeXp7y8/OVkpLinedyuZScnKzs7OwaayoqKuR2u30mAEDTF9QAys/PlyR16NDBZ36HDh28y06XlZUll8vlnTp27BjMlgAADZT1q+AyMzNVXFzsnQ4cOGC7JQBAPQhqAMXExEiSCgoKfOYXFBR4l53O6XQqIiLCZwIANH1BDaDExETFxMRow4YN3nlut1vbtm1T//79g7kpAEAj5/dVcMePH1dOTo73cV5enj7//HNFRkaqU6dOmjp1qhYsWKBLLrlEiYmJmj17tuLi4jRixIhg9g0AaOT8DqDt27dr6NCh3sfTp0+XJI0bN07Lli3TzJkzVVpaqokTJ6qoqEgDBw7UmjVr1LJly+B1DQBo9LgZKRq8QG7c+cILLwS0rUDO1ENDQ/2u2b9/v981s2bN8rtm1apVftdIJ69O9de0adMC2hYCE8jNXyXpxIkTftc4nc6AtsXNSAEADRIBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWcDds1KtA7my9Zs0av2uuuOIKv2sCVVJS4nfNlClT/K5ZtmyZ3zWBat7c729qUbt27fyuad26td81119/vd81DV1ISIjfNdHR0QFt65NPPvG75t133w1oW9wNGwDQIBFAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACm5GioA1xRuLBtLfggUL/K75+OOP/a4BGhtuRgoAaJAIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYEVz2w3Avnbt2gVU15BvLPraa68FVDdhwgS/a6qqqgLaFnCh4wwIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKzgZqTQlClTAqqrrxuLPv74437XzJ07N6BtcWNRoP5wBgQAsIIAAgBY4XcAbdmyRTfccIPi4uLkcDi0evVqn+Xjx4+Xw+HwmdLS0oLVLwCgifA7gEpLS9WnTx8tXry41jFpaWk6fPiwd1qxYsV5NQkAaHr8vgghPT1d6enpZxzjdDoVExMTcFMAgKavTt4D2rRpk6Kjo3XppZdq0qRJOnbsWK1jKyoq5Ha7fSYAQNMX9ABKS0vT8uXLtWHDBj355JPavHmz0tPTa728NSsrSy6Xyzt17Ngx2C0BABqgoH8OaMyYMd5/9+rVS71791ZSUpI2bdqkYcOGVRufmZmp6dOnex+73W5CCAAuAHV+GXaXLl0UFRWlnJycGpc7nU5FRET4TACApq/OA+jgwYM6duyYYmNj63pTAIBGxO+X4I4fP+5zNpOXl6fPP/9ckZGRioyM1Lx58zR69GjFxMQoNzdXM2fOVNeuXZWamhrUxgEAjZvfAbR9+3YNHTrU+/jU+zfjxo3TkiVLtGvXLr366qsqKipSXFychg8frvnz58vpdAavawBAo+cwxhjbTfyc2+2Wy+Wy3cYFJdBL39u0aeN3zZYtW/yuueaaa/yu8Xg8ftcACK7i4uIzvq/PveAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgRdC/khuNz5o1awKqu/nmm/2uCeSLCR955BG/awJVWFjod83f/vY3v2u+/fZbv2uApoYzIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwwmGMMbab+Dm32y2Xy2W7jQtK27ZtA6pbuXKl3zVDhw71u8bhcPhdU59KS0v9rlm8eLHfNQ899JDfNYBNxcXFioiIqHU5Z0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYEVz2w3AvqKiooDqUlJS/K75xS9+4XdNbGys3zVdunTxu0aSfvnLX/pdM3bsWL9rrrnmGr9rgKaGMyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIKbkaJeffrpp7ZbOKP27dvbbgG4YHAGBACwggACAFjhVwBlZWXpyiuvVHh4uKKjozVixAjt2bPHZ0x5ebkyMjLUvn17tWnTRqNHj1ZBQUFQmwYANH5+BdDmzZuVkZGhrVu3at26daqsrNTw4cNVWlrqHTNt2jS9//77euedd7R582YdOnRIo0aNCnrjAIDGza+LENasWePzeNmyZYqOjtaOHTs0aNAgFRcX65VXXtEbb7zh/cbHpUuX6rLLLtPWrVsD+rZJAEDTdF7vARUXF0uSIiMjJUk7duxQZWWlz1c1d+/eXZ06dVJ2dnaN66ioqJDb7faZAABNX8AB5PF4NHXqVA0YMEA9e/aUJOXn5ys0NFRt27b1GduhQwfl5+fXuJ6srCy5XC7v1LFjx0BbAgA0IgEHUEZGhnbv3q0333zzvBrIzMxUcXGxdzpw4MB5rQ8A0DgE9EHUyZMn64MPPtCWLVt08cUXe+fHxMToxIkTKioq8jkLKigoUExMTI3rcjqdcjqdgbQBAGjE/DoDMsZo8uTJWrVqlTZu3KjExESf5X379lWLFi20YcMG77w9e/Zo//796t+/f3A6BgA0CX6dAWVkZOiNN97Qu+++q/DwcO/7Oi6XS2FhYXK5XLrrrrs0ffp0RUZGKiIiQvfff7/69+/PFXAAAB9+BdCSJUskSUOGDPGZv3TpUo0fP16S9Pvf/17NmjXT6NGjVVFRodTUVL3wwgtBaRYA0HQ4jDHGdhM/53a75XK5bLeBRu7UlZn++vDDD/2uiY+P97tm+/btftf069fP7xrApuLiYkVERNS6nHvBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwIqAvhEVaOhat24dUF10dHSQO6nZK6+8Ui/bARoyzoAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwApuRoom6dFHHw2orkWLFn7XeDwev2v++te/+l0DNDWcAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFdyMFE3S5s2bA6pLSUnxu2blypV+1xw8eNDvGqCp4QwIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKxwGGOM7SZ+zu12y+Vy2W4DF6j4+Ph62c53331XL9sBbCouLlZEREStyzkDAgBYQQABAKzwK4CysrJ05ZVXKjw8XNHR0RoxYoT27NnjM2bIkCFyOBw+07333hvUpgEAjZ9fAbR582ZlZGRo69atWrdunSorKzV8+HCVlpb6jLvnnnt0+PBh7/TUU08FtWkAQOPn1zeirlmzxufxsmXLFB0drR07dmjQoEHe+a1atVJMTExwOgQANEnn9R5QcXGxJCkyMtJn/uuvv66oqCj17NlTmZmZKisrq3UdFRUVcrvdPhMAoOnz6wzo5zwej6ZOnaoBAwaoZ8+e3vm33XabEhISFBcXp127dmnWrFnas2eP/vKXv9S4nqysLM2bNy/QNgAAjVTAnwOaNGmSPvzwQ/3jH//QxRdfXOu4jRs3atiwYcrJyVFSUlK15RUVFaqoqPA+drvd6tixYyAtAeeNzwEBwXO2zwEFdAY0efJkffDBB9qyZcsZw0eSkpOTJanWAHI6nXI6nYG0AQBoxPwKIGOM7r//fq1atUqbNm1SYmLiWWs+//xzSVJsbGxADQIAmia/AigjI0NvvPGG3n33XYWHhys/P1+S5HK5FBYWptzcXL3xxhv61a9+pfbt22vXrl2aNm2aBg0apN69e9fJEwAANE5+vQfkcDhqnL906VKNHz9eBw4c0B133KHdu3ertLRUHTt21MiRI/XII4+c8XXAn+NecLCJ94CA4Anqe0Bny6qOHTtq8+bN/qwSAHCBCvgybKAp4swEqD/cjBQAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMCKBhdAxhjbLQAAguBsv88bXACVlJTYbgEAEARn+33uMA3slMPj8ejQoUMKDw+Xw+HwWeZ2u9WxY0cdOHBAERERljq0j/1wEvvhJPbDSeyHkxrCfjDGqKSkRHFxcWrWrPbznOb12NM5adasmS6++OIzjomIiLigD7BT2A8nsR9OYj+cxH44yfZ+cLlcZx3T4F6CAwBcGAggAIAVjSqAnE6n5syZI6fTabsVq9gPJ7EfTmI/nMR+OKkx7YcGdxECAODC0KjOgAAATQcBBACwggACAFhBAAEArCCAAABWNJoAWrx4sTp37qyWLVsqOTlZn3zyie2W6t3cuXPlcDh8pu7du9tuq85t2bJFN9xwg+Li4uRwOLR69Wqf5cYYPfroo4qNjVVYWJhSUlK0d+9eO83WobPth/Hjx1c7PtLS0uw0W0eysrJ05ZVXKjw8XNHR0RoxYoT27NnjM6a8vFwZGRlq37692rRpo9GjR6ugoMBSx3XjXPbDkCFDqh0P9957r6WOa9YoAuitt97S9OnTNWfOHH366afq06ePUlNTdeTIEdut1bsePXro8OHD3ukf//iH7ZbqXGlpqfr06aPFixfXuPypp57Ss88+qxdffFHbtm1T69atlZqaqvLy8nrutG6dbT9IUlpams/xsWLFinrssO5t3rxZGRkZ2rp1q9atW6fKykoNHz5cpaWl3jHTpk3T+++/r3feeUebN2/WoUOHNGrUKItdB9+57AdJuueee3yOh6eeespSx7UwjUC/fv1MRkaG93FVVZWJi4szWVlZFruqf3PmzDF9+vSx3YZVksyqVau8jz0ej4mJiTFPP/20d15RUZFxOp1mxYoVFjqsH6fvB2OMGTdunLnpppus9GPLkSNHjCSzefNmY8zJ//sWLVqYd955xzvmX//6l5FksrOzbbVZ507fD8YYM3jwYDNlyhR7TZ2DBn8GdOLECe3YsUMpKSneec2aNVNKSoqys7MtdmbH3r17FRcXpy5duuj222/X/v37bbdkVV5envLz832OD5fLpeTk5Avy+Ni0aZOio6N16aWXatKkSTp27JjtlupUcXGxJCkyMlKStGPHDlVWVvocD927d1enTp2a9PFw+n445fXXX1dUVJR69uypzMxMlZWV2WivVg3ubtinO3r0qKqqqtShQwef+R06dNDXX39tqSs7kpOTtWzZMl166aU6fPiw5s2bp6uvvlq7d+9WeHi47fasyM/Pl6Qaj49Tyy4UaWlpGjVqlBITE5Wbm6uHH35Y6enpys7OVkhIiO32gs7j8Wjq1KkaMGCAevbsKenk8RAaGqq2bdv6jG3Kx0NN+0GSbrvtNiUkJCguLk67du3SrFmztGfPHv3lL3+x2K2vBh9A+H/p6enef/fu3VvJyclKSEjQ22+/rbvuustiZ2gIxowZ4/13r1691Lt3byUlJWnTpk0aNmyYxc7qRkZGhnbv3n1BvA96JrXth4kTJ3r/3atXL8XGxmrYsGHKzc1VUlJSfbdZowb/ElxUVJRCQkKqXcVSUFCgmJgYS101DG3btlW3bt2Uk5NjuxVrTh0DHB/VdenSRVFRUU3y+Jg8ebI++OADffTRRz7fHxYTE6MTJ06oqKjIZ3xTPR5q2w81SU5OlqQGdTw0+AAKDQ1V3759tWHDBu88j8ejDRs2qH///hY7s+/48ePKzc1VbGys7VasSUxMVExMjM/x4Xa7tW3btgv++Dh48KCOHTvWpI4PY4wmT56sVatWaePGjUpMTPRZ3rdvX7Vo0cLneNizZ4/279/fpI6Hs+2Hmnz++eeS1LCOB9tXQZyLN9980zidTrNs2TLz1VdfmYkTJ5q2bdua/Px8263VqwceeMBs2rTJ5OXlmX/+858mJSXFREVFmSNHjthurU6VlJSYzz77zHz22WdGklm4cKH57LPPzLfffmuMMeZ3v/udadu2rXn33XfNrl27zE033WQSExPNjz/+aLnz4DrTfigpKTEzZsww2dnZJi8vz6xfv9784he/MJdccokpLy+33XrQTJo0ybhcLrNp0yZz+PBh71RWVuYdc++995pOnTqZjRs3mu3bt5v+/fub/v37W+w6+M62H3Jycsxjjz1mtm/fbvLy8sy7775runTpYgYNGmS5c1+NIoCMMea5554znTp1MqGhoaZfv35m69attluqd7feequJjY01oaGhJj4+3tx6660mJyfHdlt17qOPPjKSqk3jxo0zxpy8FHv27NmmQ4cOxul0mmHDhpk9e/bYbboOnGk/lJWVmeHDh5uLLrrItGjRwiQkJJh77rmnyf2RVtPzl2SWLl3qHfPjjz+a++67z7Rr1860atXKjBw50hw+fNhe03XgbPth//79ZtCgQSYyMtI4nU7TtWtX8+CDD5ri4mK7jZ+G7wMCAFjR4N8DAgA0TQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYMX/AVwrqgEm+/UmAAAAAElFTkSuQmCC\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAro0lEQVR4nO3deXSUVZ7/8U8FoQiQBLIvQggJiy2Ip6NEFAhChKTd2Bpp7RbQhgaDI6KiYQYBt7TLQVoHUWccEMUNFWg9NoqRpbsNOLKIy8CQdJAgSSBpU4HEQEzu7w9+1FBko4qEm4T365x7DvXUvfV868lDPvUsdeMwxhgBAHCe+dkuAABwYSKAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCA0CwWLlwoh8Oh4uLiJnvNKVOmqGfPnk32em3BihUr5HA4tH//fvey4cOHa/jw4dZqOlNdNTa3TZs2yeFw6N13322y17TxPto6Aug8cDgcZ9U2bdpktc7hw4erf//+VmtobkePHtXcuXMVFxcnp9OpmJgYTZgwQRUVFT69Xs+ePT1+huHh4Ro6dKjWrFnTxJU3r4qKCi1cuNDqPtgcH1pampqaGi1btkyXX365/P39FRISohEjRuirr76yXZoVF9ku4ELw2muveTxeuXKlNmzYUGv5JZdccj7LuuC4XC4lJyfr4MGDmj59uhISEnTkyBH99a9/1fHjx9WpUyefXvfyyy/XfffdJ0k6dOiQXnrpJY0bN07Lli3TjBkzmvItnJVPPvnE6zEVFRVatGiRJLWoo6e25o477tCqVat0++23a9asWSovL9fOnTt1+PBh26VZQQCdB7/97W89Hm/dulUbNmyotfxMFRUVPv9SRG0ZGRn6/vvvtWPHDsXFxbmXP/jgg+f0ujExMR4/y9tvv10JCQl69tln6w2gn3/+WTU1NerQocM5rbsuzfGaOHfvvPOOXn31Vb3//vsaO3as7XJaBE7BtRCnTn9t375dw4YNU6dOnTRv3jxJJ0/hLVy4sNaYnj17asqUKR7LSktLNXv2bHXv3l1Op1MJCQl68sknVVNT0yR17t69W1OmTFGvXr3UsWNHRUZG6o477lBJSUmd/YuLizVx4kQFBgYqJCRE99xzjyorK2v1e/3115WYmCh/f38FBwdr0qRJys/Pb7SegoIC7dmzR1VVVQ32Ky0t1fLlyzV9+nTFxcXpxIkTOn78+Nm9aS9FRkbqkksuUV5eniRp//79cjgceuaZZ7RkyRLFx8fL6XTqu+++kyTt2bNHEyZMUHBwsDp27KgrrrhCf/7zn2u97rfffqsRI0bI399fF198sR577LE6f651XQOqrKzUwoUL1adPH3Xs2FFRUVEaN26ccnNztX//foWFhUmSFi1a5D6dePo+19Q1+uqf//yn7r//fg0YMEBdunRRYGCg0tLS6j2FVV1drXnz5ikyMlKdO3fWTTfdVOd+tW3bNqWmpiooKEidOnVScnKy/v73vzdaj8vl0p49e+RyuRrtu3jxYg0aNEhjx45VTU2NysvLG3/DbRxHQC1ISUmJ0tLSNGnSJP32t79VRESEV+MrKiqUnJysH374QX/4wx/Uo0cPff7558rIyFBBQYGWLFlyzjVu2LBB//jHPzR16lRFRkbq22+/1csvv6xvv/1WW7dulcPh8Og/ceJE9ezZU5mZmdq6dauee+45/fjjj1q5cqW7z+OPP6758+dr4sSJ+v3vf68jR47o+eef17Bhw7Rz50517dq13noyMjL06quvKi8vr8EbFP72t7+psrJSCQkJmjBhgtauXauamhoNHjxYS5cu1eWXX36OW+b/VFVVKT8/XyEhIR7Lly9frsrKSk2fPl1Op1PBwcH69ttvdc011ygmJkYPPfSQOnfurHfeeUdjxozRe++95/6kXFhYqGuvvVY///yzu9/LL78sf3//Ruuprq7WDTfcoKysLE2aNEn33HOPjh49qg0bNuibb75RSkqKli1bppkzZ2rs2LEaN26cJOmyyy6TpPNS49n6xz/+obVr1+rXv/614uLiVFRUpJdeeknJycn67rvvFB0d7dH/8ccfl8Ph0IMPPqjDhw9ryZIlSklJ0a5du9x1ffbZZ0pLS1NiYqIWLFggPz8/LV++XCNGjNBf//pXDRo0qN561qxZo6lTp2r58uW1PgyerqysTF988YXuuusuzZs3T88//7yOHTumuLg4/fGPf9TEiRObZPu0OgbnXXp6ujlz0ycnJxtJ5sUXX6zVX5JZsGBBreWxsbFm8uTJ7sePPvqo6dy5s/nf//1fj34PPfSQadeunTlw4ECDdSUnJ5tLL720wT4VFRW1lr355ptGktmyZYt72YIFC4wkc9NNN3n0veuuu4wk89VXXxljjNm/f79p166defzxxz36ff311+aiiy7yWD558mQTGxvr0W/y5MlGksnLy2uw7sWLFxtJJiQkxAwaNMisWrXKvPDCCyYiIsJ069bNHDp0qMHx9YmNjTWjRo0yR44cMUeOHDFfffWVmTRpkpFk7r77bmOMMXl5eUaSCQwMNIcPH/YYP3LkSDNgwABTWVnpXlZTU2Ouvvpq07t3b/ey2bNnG0lm27Zt7mWHDx82QUFBtd5/cnKySU5Odj/+r//6LyPJLF68uFb9NTU1xhhjjhw5Uu9+1hw11uXUPnPkyJF6+1RWVprq6mqPZXl5ecbpdJpHHnnEvWzjxo1GkomJiTFlZWXu5e+8846RZP70pz+530fv3r3N6NGj3dvCmJP7eVxcnLnuuuvcy5YvX17rfZxatnz58gbf244dO9z7X0REhHnhhRfMqlWrzKBBg4zD4TB/+ctfGhzfVnEKrgVxOp2aOnWqz+NXr16toUOHqlu3biouLna3lJQUVVdXa8uWLedc4+mfZisrK1VcXKyrrrpKkrRjx45a/dPT0z0e33333ZKkjz76SJL0/vvvq6amRhMnTvSoOTIyUr1799bGjRsbrGfFihUyxjR6e/axY8cknTydmZWVpVtvvVUzZ87U2rVr9eOPP2rp0qUNv/EGfPLJJwoLC1NYWJgGDhyo1atX63e/+52efPJJj37jx493n+qSTp5O+uyzzzRx4kQdPXrU/d5LSko0evRo7du3Tz/88IOkk9vrqquu8vg0HhYWpttuu63R+t577z2Fhoa6t/3pzjxiPdP5qvFsOZ1O+fmd/LVVXV2tkpISdenSRX379q1z/7v99tsVEBDgfjxhwgRFRUW5979du3Zp3759uvXWW1VSUuJ+f+Xl5Ro5cqS2bNnS4CnEKVOmyBjT4NGP9H/7X0lJidatW6eZM2fq1ltvVVZWlkJCQvTYY495uynaBE7BtSAxMTHndAF537592r17t8cvudM1xZ02//znP7Vo0SK99dZbtV6vrvPgvXv39ngcHx8vPz8/93cp9u3bJ2NMrX6ntG/f/pxrlv4vOG+88UZ16dLFvfyqq65SXFycPv/8c59fOykpSY899pgcDoc6deqkSy65pM7Thqff+CBJOTk5MsZo/vz5mj9/fp2vffjwYcXExOj7779XUlJSref79u3baH25ubnq27evLrrI+//u56vGs1VTU6M//elPeuGFF5SXl6fq6mr3c2ee8pRq738Oh0MJCQke+58kTZ48ud51ulwudevW7ZzqPrX/xcXFeWyjLl266MYbb9Trr7+un3/+2aefUWt2Yb3bFs7bc+Wn/+eTTv7nvO666zR37tw6+/fp08fn2k6ZOHGiPv/8cz3wwAO6/PLL1aVLF9XU1Cg1NfWsLjaf+Ym7pqZGDodDf/nLX9SuXbta/U8Pi3Nx6tpAXdfVwsPD9eOPP/r82qGhoUpJSWm035k/31Pb6/7779fo0aPrHJOQkOBzXU2hpdX4xBNPaP78+brjjjv06KOPKjg4WH5+fpo9e7ZPNzucGvP000/Xex2wKfbBxva/qqoqlZeXKygo6JzX1ZoQQK1At27dVFpa6rHsxIkTKigo8FgWHx+vY8eOndUvQ1/8+OOPysrK0qJFi/Twww+7l5/6FFmXffv2eXzyz8nJUU1NjfuUWXx8vIwxiouLa5KArE9iYqIkuU8Xne7QoUPq169fs627Pr169ZJ08iivsZ9ZbGxsndt57969ja4nPj5e27ZtU1VVVb1HlPWdijtfNZ6td999V9dee61eeeUVj+WlpaUKDQ2t1f/MeowxysnJcd9gER8fL0kKDAxstv830skAioyMrHf/69ixo8epwgsF14Bagfj4+FrXb15++eVaR0ATJ05Udna2Pv7441qvUVpaqp9//vmc6jh1hGKM8Vje0N11Z15bef755yVJaWlpkqRx48apXbt2WrRoUa3XNcbUe3v3KWd7G3bfvn01cOBArVu3zuOb9p988ony8/N13XXXNTi+OYSHh2v48OF66aWXan2YkKQjR464//2rX/1KW7du1RdffOHx/KpVqxpdz/jx41VcXKx///d/r/XcqW1+6vtmZ37QOV81nq127drV2k9Wr15d5y926eSXvo8ePep+/O6776qgoMC9/yUmJio+Pl7PPPOM+zrN6U5/f3Xx5jbsW265Rfn5+dqwYYN7WXFxsdatW6cRI0a4r21dSDgCagV+//vfa8aMGRo/fryuu+46ffXVV/r4449rfeJ74IEH9Oc//1k33HCDpkyZosTERJWXl+vrr7/Wu+++q/3799f5KfF0R44cqfOCaFxcnG677TYNGzZMTz31lKqqqhQTE6NPPvnE/X2XuuTl5emmm25SamqqsrOz9frrr+vWW2/VwIEDJZ0M18cee0wZGRnav3+/xowZo4CAAOXl5WnNmjWaPn267r///npf/2xvw5akZ599Vtddd52GDBmiP/zhD3K5XFq8eLH69OmjmTNnuvvt379fcXFxmjx5slasWNHga56rpUuXasiQIRowYICmTZumXr16qaioSNnZ2Tp48KD7+y1z587Va6+9ptTUVN1zzz3uW5xjY2O1e/fuBtdx++23a+XKlZozZ46++OILDR06VOXl5fr0009111136eabb5a/v79+8Ytf6O2331afPn0UHBys/v37q3///uelxtMtXry41hew/fz8NG/ePN1www165JFHNHXqVF199dX6+uuvtWrVKveR2pmCg4M1ZMgQTZ06VUVFRVqyZIkSEhI0bdo09+v+53/+p9LS0nTppZdq6tSpiomJ0Q8//KCNGzcqMDBQH3zwQb21nu1t2NLJffWdd97R+PHjNWfOHAUFBenFF19UVVWVnnjiibPePm2KnZvvLmz13YZd3y3Q1dXV5sEHHzShoaGmU6dOZvTo0SYnJ6fWbdjGGHP06FGTkZFhEhISTIcOHUxoaKi5+uqrzTPPPGNOnDjRYF2nbgWvq40cOdIYY8zBgwfN2LFjTdeuXU1QUJD59a9/bQ4dOlTrFt5Tt9R+9913ZsKECSYgIMB069bNzJo1y/z000+11v3ee++ZIUOGmM6dO5vOnTubfv36mfT0dLN37153n3O5DfuUDRs2mKuuusp07NjRBAcHm9/97nemoKDAo8/XX39tJJmHHnqo0deLjY01119/fYN9Tt2G/fTTT9f5fG5urrn99ttNZGSkad++vYmJiTE33HCDeffddz367d692yQnJ5uOHTuamJgY8+ijj5pXXnml0duwjTl5W/G//uu/mri4ONO+fXsTGRlpJkyYYHJzc919Pv/8c5OYmGg6dOhQ6+fZ1DXW5dQ+U1dr166dMebkbdj33XefiYqKMv7+/uaaa64x2dnZtd7zqduw33zzTZORkWHCw8ONv7+/uf766833339fa907d+4048aNMyEhIcbpdJrY2FgzceJEk5WV5e5zLrdhn74dx44dawIDA42/v78ZMWKE+eKLL85qbFvkMOaM41ngAvfCCy9o7ty5ys3N9frLwADO3oV30hFoxMaNG/Uv//IvhA/QzDgCAgBYwREQAMAKAggAYAUBBACwggACAFjR4r6IWlNTo0OHDikgIKDRmXoBAC2PMUZHjx5VdHR0gzM8tLgAOnTokLp37267DADAOcrPz9fFF19c7/Mt7hTchTghHwC0RY39Pm+2AFq6dKl69uypjh07KikpyWOCwoZw2g0A2obGfp83SwC9/fbbmjNnjhYsWKAdO3Zo4MCBGj16dJP8QTQAQBvRHBPMDRo0yKSnp7sfV1dXm+joaJOZmdnoWJfLVe+EhDQajUZrPc3lcjX4+77Jj4BOnDih7du3e/xxJz8/P6WkpCg7O7tW/+PHj6usrMyjAQDaviYPoOLiYlVXV9eayDEiIkKFhYW1+mdmZiooKMjduAMOAC4M1u+Cy8jIkMvlcrf8/HzbJQEAzoMm/x5QaGio2rVrp6KiIo/lRUVFioyMrNXf6XTK6XQ2dRkAgBauyY+AOnTooMTERGVlZbmX1dTUKCsrS4MHD27q1QEAWqlmmQlhzpw5mjx5sq644goNGjRIS5YsUXl5uaZOndocqwMAtELNEkC33HKLjhw5oocffliFhYW6/PLLtX79ev7CJADArcX9RdSysjIFBQXZLgMAcI5cLpcCAwPrfd76XXAAgAsTAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsOIi2wUArV1iYqLXYz766COvx4SFhXk95siRI16PkaSIiAifxgHe4AgIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKxgMlLgHPkysWhISIjXY3yZWDQtLc3rMcD5whEQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjBZKRokzp37uzTuJUrV3o9JiwszOsxxhivxyQnJ3s9Zs+ePV6PAc4XjoAAAFYQQAAAK5o8gBYuXCiHw+HR+vXr19SrAQC0cs1yDejSSy/Vp59++n8ruYhLTQAAT82SDBdddJEiIyOb46UBAG1Es1wD2rdvn6Kjo9WrVy/ddtttOnDgQL19jx8/rrKyMo8GAGj7mjyAkpKStGLFCq1fv17Lli1TXl6ehg4dqqNHj9bZPzMzU0FBQe7WvXv3pi4JANACOYwvX0jwQmlpqWJjY7V48WLdeeedtZ4/fvy4jh8/7n5cVlZGCOGcnc/vAY0dO9brMb78t7v00ku9HsP3gGCTy+VSYGBgvc83+90BXbt2VZ8+fZSTk1Pn806nU06ns7nLAAC0MM3+PaBjx44pNzdXUVFRzb0qAEAr0uQBdP/992vz5s3av3+/Pv/8c40dO1bt2rXTb37zm6ZeFQCgFWvyU3AHDx7Ub37zG5WUlCgsLExDhgzR1q1bfZovCwDQdjV5AL311ltN/ZKA13ydfePmm2/2eowvNxQ8/vjjXo/hhgK0NcwFBwCwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWNPsfpAPOlS8zqb/22ms+rcvhcHg9Jj8/3+sxzz33nNdjgLaGIyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwWzYaPHGjh3r9Zi+ffv6tC5jjNdjXnrpJa/HFBcXez0GaGs4AgIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK5iMFC3e0KFDvR7jcDiaoZK6ZWZmnrd1AW0JR0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAWTkeK8CgsL83rMkCFDvB5jjPF6jCS9//77Po0D4D2OgAAAVhBAAAArvA6gLVu26MYbb1R0dLQcDofWrl3r8bwxRg8//LCioqLk7++vlJQU7du3r6nqBQC0EV4HUHl5uQYOHKilS5fW+fxTTz2l5557Ti+++KK2bdumzp07a/To0aqsrDznYgEAbYfXNyGkpaUpLS2tzueMMVqyZIn+7d/+TTfffLMkaeXKlYqIiNDatWs1adKkc6sWANBmNOk1oLy8PBUWFiolJcW9LCgoSElJScrOzq5zzPHjx1VWVubRAABtX5MGUGFhoSQpIiLCY3lERIT7uTNlZmYqKCjI3bp3796UJQEAWijrd8FlZGTI5XK5W35+vu2SAADnQZMGUGRkpCSpqKjIY3lRUZH7uTM5nU4FBgZ6NABA29ekARQXF6fIyEhlZWW5l5WVlWnbtm0aPHhwU64KANDKeX0X3LFjx5STk+N+nJeXp127dik4OFg9evTQ7Nmz9dhjj6l3796Ki4vT/PnzFR0drTFjxjRl3QCAVs7rAPryyy917bXXuh/PmTNHkjR58mStWLFCc+fOVXl5uaZPn67S0lINGTJE69evV8eOHZuuagBAq+cwvs7a2EzKysoUFBRkuww0kxdffNHrMdOmTfN6jMPh8HqMJF1xxRVej9mxY4dP6wLaOpfL1eB1fet3wQEALkwEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY4fWfYwDOtxY2YTuAJsIREADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwWSkaPEcDofXY3bs2OHTunwdB8B7HAEBAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBVMRooWzxjj9ZjQ0FCf1uXLuOLiYp/WBVzoOAICAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACuYjBQtnsPh8HpMbGysT+tKTEz0eszHH3/s9ZiwsDCvx/hS25gxY7weI/lWny+Txs6cOdPrMUeOHPF6DFomjoAAAFYQQAAAK7wOoC1btujGG29UdHS0HA6H1q5d6/H8lClT5HA4PFpqampT1QsAaCO8DqDy8nINHDhQS5curbdPamqqCgoK3O3NN988pyIBAG2P1zchpKWlKS0trcE+TqdTkZGRPhcFAGj7muUa0KZNmxQeHq6+fftq5syZKikpqbfv8ePHVVZW5tEAAG1fkwdQamqqVq5cqaysLD355JPavHmz0tLSVF1dXWf/zMxMBQUFuVv37t2buiQAQAvU5N8DmjRpkvvfAwYM0GWXXab4+Hht2rRJI0eOrNU/IyNDc+bMcT8uKysjhADgAtDst2H36tVLoaGhysnJqfN5p9OpwMBAjwYAaPuaPYAOHjyokpISRUVFNfeqAACtiNen4I4dO+ZxNJOXl6ddu3YpODhYwcHBWrRokcaPH6/IyEjl5uZq7ty5SkhI0OjRo5u0cABA6+Z1AH355Ze69tpr3Y9PXb+ZPHmyli1bpt27d+vVV19VaWmpoqOjNWrUKD366KNyOp1NVzUAoNXzOoCGDx/e4KSDvkzMiAvHnj17vB7jyySXvvJl8s4dO3Z4Peajjz7yeswvf/lLr8f4uu18mQDWl3X5MmlsY99DrEtxcbHXY9D8mAsOAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjjM+Zxq+CyUlZUpKCjIdhloJv369fN6zH//9397PaZz585ej5F8m9H5fM0cXVFR4fUYX2Yfl3zbfn379vV6jC/bzpfZsJml3w6Xy9XgX7nmCAgAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArLjIdgG4sPgyOeaaNWu8HnPbbbd5PUbybZJQX7z//vtej5k/f77XY3ydjLRTp05ej9m2bZvXY37xi194PWbMmDFej2Ey0paJIyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsILJSNHiPfHEE16PSU1N9WldISEhXo/x8/P+c5wvk4SWlJR4PcZXYWFhXo8JDw/3eowv2+4//uM/vB6DlokjIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwwmGMMbaLOF1ZWZmCgoJsl4FWbvbs2T6Ne+aZZ7we43A4vB7jy3+7/Px8r8cUFxd7PUaSOnXq5PWYvn37ej3Gl2135ZVXej1mx44dXo/BuXO5XAoMDKz3eY6AAABWEEAAACu8CqDMzExdeeWVCggIUHh4uMaMGaO9e/d69KmsrFR6erpCQkLUpUsXjR8/XkVFRU1aNACg9fMqgDZv3qz09HRt3bpVGzZsUFVVlUaNGqXy8nJ3n3vvvVcffPCBVq9erc2bN+vQoUMaN25ckxcOAGjdvPqLqOvXr/d4vGLFCoWHh2v79u0aNmyYXC6XXnnlFb3xxhsaMWKEJGn58uW65JJLtHXrVl111VVNVzkAoFU7p2tALpdLkhQcHCxJ2r59u6qqqpSSkuLu069fP/Xo0UPZ2dl1vsbx48dVVlbm0QAAbZ/PAVRTU6PZs2frmmuuUf/+/SVJhYWF6tChg7p27erRNyIiQoWFhXW+TmZmpoKCgtyte/fuvpYEAGhFfA6g9PR0ffPNN3rrrbfOqYCMjAy5XC538+W7DgCA1sera0CnzJo1Sx9++KG2bNmiiy++2L08MjJSJ06cUGlpqcdRUFFRkSIjI+t8LafTKafT6UsZAIBWzKsjIGOMZs2apTVr1uizzz5TXFycx/OJiYlq3769srKy3Mv27t2rAwcOaPDgwU1TMQCgTfDqCCg9PV1vvPGG1q1bp4CAAPd1naCgIPn7+ysoKEh33nmn5syZo+DgYAUGBuruu+/W4MGDuQMOAODBqwBatmyZJGn48OEey5cvX64pU6ZIkp599ln5+flp/PjxOn78uEaPHq0XXnihSYoFALQdTEaKNiksLMyncRkZGV6PSU1N9XqMLxN3+vl5f89QTU2N12PO57oefvhhr8c8/vjjXo+BHUxGCgBokQggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCC2bCBc9SpUyevx4wdO9brMfPmzfN6jC+zbktSZmam12PWrFnj9ZgdO3Z4PQatB7NhAwBaJAIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwWSkAIBmwWSkAIAWiQACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWeBVAmZmZuvLKKxUQEKDw8HCNGTNGe/fu9egzfPhwORwOjzZjxowmLRoA0Pp5FUCbN29Wenq6tm7dqg0bNqiqqkqjRo1SeXm5R79p06apoKDA3Z566qkmLRoA0Ppd5E3n9evXezxesWKFwsPDtX37dg0bNsy9vFOnToqMjGyaCgEAbdI5XQNyuVySpODgYI/lq1atUmhoqPr376+MjAxVVFTU+xrHjx9XWVmZRwMAXACMj6qrq831119vrrnmGo/lL730klm/fr3ZvXu3ef31101MTIwZO3Zsva+zYMECI4lGo9Fobay5XK4Gc8TnAJoxY4aJjY01+fn5DfbLysoykkxOTk6dz1dWVhqXy+Vu+fn51jcajUaj0c69NRZAXl0DOmXWrFn68MMPtWXLFl188cUN9k1KSpIk5eTkKD4+vtbzTqdTTqfTlzIAAK2YVwFkjNHdd9+tNWvWaNOmTYqLi2t0zK5duyRJUVFRPhUIAGibvAqg9PR0vfHGG1q3bp0CAgJUWFgoSQoKCpK/v79yc3P1xhtv6Fe/+pVCQkK0e/du3XvvvRo2bJguu+yyZnkDAIBWypvrPqrnPN/y5cuNMcYcOHDADBs2zAQHBxun02kSEhLMAw880Oh5wNO5XC7r5y1pNBqNdu6tsd/9jv8fLC1GWVmZgoKCbJcBADhHLpdLgYGB9T7PXHAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACtaXAAZY2yXAABoAo39Pm9xAXT06FHbJQAAmkBjv88dpoUdctTU1OjQoUMKCAiQw+HweK6srEzdu3dXfn6+AgMDLVVoH9vhJLbDSWyHk9gOJ7WE7WCM0dGjRxUdHS0/v/qPcy46jzWdFT8/P1188cUN9gkMDLygd7BT2A4nsR1OYjucxHY4yfZ2CAoKarRPizsFBwC4MBBAAAArWlUAOZ1OLViwQE6n03YpVrEdTmI7nMR2OIntcFJr2g4t7iYEAMCFoVUdAQEA2g4CCABgBQEEALCCAAIAWEEAAQCsaDUBtHTpUvXs2VMdO3ZUUlKSvvjiC9slnXcLFy6Uw+HwaP369bNdVrPbsmWLbrzxRkVHR8vhcGjt2rUezxtj9PDDDysqKkr+/v5KSUnRvn377BTbjBrbDlOmTKm1f6SmptoptplkZmbqyiuvVEBAgMLDwzVmzBjt3bvXo09lZaXS09MVEhKiLl26aPz48SoqKrJUcfM4m+0wfPjwWvvDjBkzLFVct1YRQG+//bbmzJmjBQsWaMeOHRo4cKBGjx6tw4cP2y7tvLv00ktVUFDgbn/7299sl9TsysvLNXDgQC1durTO55966ik999xzevHFF7Vt2zZ17txZo0ePVmVl5XmutHk1th0kKTU11WP/ePPNN89jhc1v8+bNSk9P19atW7VhwwZVVVVp1KhRKi8vd/e599579cEHH2j16tXavHmzDh06pHHjxlmsuumdzXaQpGnTpnnsD0899ZSliuthWoFBgwaZ9PR09+Pq6moTHR1tMjMzLVZ1/i1YsMAMHDjQdhlWSTJr1qxxP66pqTGRkZHm6aefdi8rLS01TqfTvPnmmxYqPD/O3A7GGDN58mRz8803W6nHlsOHDxtJZvPmzcaYkz/79u3bm9WrV7v7/M///I+RZLKzs22V2ezO3A7GGJOcnGzuuecee0WdhRZ/BHTixAlt375dKSkp7mV+fn5KSUlRdna2xcrs2Ldvn6Kjo9WrVy/ddtttOnDggO2SrMrLy1NhYaHH/hEUFKSkpKQLcv/YtGmTwsPD1bdvX82cOVMlJSW2S2pWLpdLkhQcHCxJ2r59u6qqqjz2h379+qlHjx5ten84czucsmrVKoWGhqp///7KyMhQRUWFjfLq1eJmwz5TcXGxqqurFRER4bE8IiJCe/bssVSVHUlJSVqxYoX69u2rgoICLVq0SEOHDtU333yjgIAA2+VZUVhYKEl17h+nnrtQpKamaty4cYqLi1Nubq7mzZuntLQ0ZWdnq127drbLa3I1NTWaPXu2rrnmGvXv31/Syf2hQ4cO6tq1q0fftrw/1LUdJOnWW29VbGysoqOjtXv3bj344IPau3ev3n//fYvVemrxAYT/k5aW5v73ZZddpqSkJMXGxuqdd97RnXfeabEytASTJk1y/3vAgAG67LLLFB8fr02bNmnkyJEWK2se6enp+uabby6I66ANqW87TJ8+3f3vAQMGKCoqSiNHjlRubq7i4+PPd5l1avGn4EJDQ9WuXbtad7EUFRUpMjLSUlUtQ9euXdWnTx/l5OTYLsWaU/sA+0dtvXr1UmhoaJvcP2bNmqUPP/xQGzdu9Pj7YZGRkTpx4oRKS0s9+rfV/aG+7VCXpKQkSWpR+0OLD6AOHTooMTFRWVlZ7mU1NTXKysrS4MGDLVZm37Fjx5Sbm6uoqCjbpVgTFxenyMhIj/2jrKxM27Ztu+D3j4MHD6qkpKRN7R/GGM2aNUtr1qzRZ599pri4OI/nExMT1b59e4/9Ye/evTpw4ECb2h8a2w512bVrlyS1rP3B9l0QZ+Ott94yTqfTrFixwnz33Xdm+vTppmvXrqawsNB2aefVfffdZzZt2mTy8vLM3//+d5OSkmJCQ0PN4cOHbZfWrI4ePWp27txpdu7caSSZxYsXm507d5rvv//eGGPMH//4R9O1a1ezbt06s3v3bnPzzTebuLg489NPP1muvGk1tB2OHj1q7r//fpOdnW3y8vLMp59+an75y1+a3r17m8rKStulN5mZM2eaoKAgs2nTJlNQUOBuFRUV7j4zZswwPXr0MJ999pn58ssvzeDBg83gwYMtVt30GtsOOTk55pFHHjFffvmlycvLM+vWrTO9evUyw4YNs1y5p1YRQMYY8/zzz5sePXqYDh06mEGDBpmtW7faLum8u+WWW0xUVJTp0KGDiYmJMbfccovJycmxXVaz27hxo5FUq02ePNkYc/JW7Pnz55uIiAjjdDrNyJEjzd69e+0W3Qwa2g4VFRVm1KhRJiwszLRv397ExsaaadOmtbkPaXW9f0lm+fLl7j4//fSTueuuu0y3bt1Mp06dzNixY01BQYG9optBY9vhwIEDZtiwYSY4ONg4nU6TkJBgHnjgAeNyuewWfgb+HhAAwIoWfw0IANA2EUAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFf8P+AHSVCMFQ4sAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApkElEQVR4nO3de3QUZZ7G8acToQmQNISQKxBCuOjKbRcl4gVwCIQ4KEgcRJ0xMA4MGlwR8RJ3EFDYrOgyqIuou7MwjIAKCKK7o0K4zQwBDwgiujAkEwQkCRDNhWACJu/+waGHJgnQoTtvEr6fc+qcdNX7Vv26UsnTVf12tcMYYwQAQD0LsF0AAODqRAABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQDBL2bOnCmHw6ETJ074bJ3jxo1T586dfba+pmDx4sVyOBw6ePCge97gwYM1ePBgazVdqKYa/W3Tpk1yOBxauXKlz9Zp43k0dQRQPXA4HJc1bdq0yWqdgwcPVs+ePa3W4C/n/iHVNs2ZM6dO6+3cubPHesLDw3Xbbbdp9erVPn4G/nXq1CnNnDnT6jHojxctDcnFjr+hQ4faLs+Ka2wXcDX4wx/+4PF4yZIlWrduXbX51113XX2WdVW57rrrqu1v6ezv5tNPP9WwYcPqvO6+ffvqiSeekCQdPXpUb775pkaPHq2FCxdq0qRJdV5vXX366ade9zl16pRmzZolSQ3q7Kkpqen427Fjh1555ZUrOv4aMwKoHvz85z/3eLxt2zatW7eu2vwLnTp1Si1btvRnaVeNiIiIGvf3rFmz1K1bN9144411XndMTIzHuh988EF17dpVv/3tb2sNoB9//FFVVVVq3rx5nbdbG3+sE1eupuPv3Jn5fffdZ6Ei+7gE10Ccu/y1c+dODRw4UC1bttSzzz4r6eyp+8yZM6v16dy5s8aNG+cxr6ioSFOmTFHHjh3ldDrVtWtXvfjii6qqqvJJnXv27NG4cePUpUsXtWjRQpGRkfrlL3+pwsLCGtufOHFCY8aMUUhIiNq1a6fHHntM5eXl1dq9/fbb6tevn4KCghQaGqqxY8fq8OHDl6wnLy9P+/bt05kzZ7x+Lp999pmys7P1wAMPeN33YiIjI3XdddcpNzdXknTw4EE5HA69/PLLmj9/vuLj4+V0OvX1119Lkvbt26d77rlHoaGhatGihW644QatXbu22nq/+uor/eQnP1FQUJA6dOig2bNn1/h7rek9oPLycs2cOVPdu3dXixYtFBUVpdGjRysnJ0cHDx5U+/btJZ0N5HOXhc4/5nxdY1199913mjZtmnr16qXWrVsrJCREycnJ+uKLL2psX1lZqWeffVaRkZFq1aqV7rrrrhqPq+3bt2v48OFyuVxq2bKlBg0apL/85S+XrKe4uFj79u1TcXGx18+loqJCq1at0qBBg9ShQwev+zcFnAE1IIWFhUpOTtbYsWP185//XBEREV71P3XqlAYNGqRvv/1Wv/71r9WpUydt3bpV6enpysvL0/z586+4xnXr1ulvf/ubxo8fr8jISH311Vd666239NVXX2nbtm1yOBwe7ceMGaPOnTsrIyND27Zt06uvvqrvv/9eS5YscbeZM2eOpk+frjFjxuhXv/qVjh8/rtdee00DBw7Url271KZNm1rrSU9P1+9//3vl5uZ6PUBh6dKlkuTzADpz5owOHz6sdu3aecxftGiRysvLNXHiRDmdToWGhuqrr77SLbfcopiYGD3zzDNq1aqV3nvvPY0aNUqrVq3S3XffLUnKz8/X7bffrh9//NHd7q233lJQUNAl66msrNSIESOUmZmpsWPH6rHHHlNpaanWrVunvXv3KjExUQsXLtTDDz+su+++W6NHj5Yk9e7dW5LqpcbL9be//U1r1qzRz372M8XFxamgoEBvvvmmBg0apK+//lrR0dEe7efMmSOHw6Gnn35ax44d0/z585WYmKjdu3e769qwYYOSk5PVr18/zZgxQwEBAVq0aJF+8pOf6E9/+pP69+9faz2rV6/W+PHjtWjRomovBi/lf//3f1VUVOTz469RMah3aWlp5sJdP2jQICPJvPHGG9XaSzIzZsyoNj82Ntakpqa6H7/wwgumVatW5q9//atHu2eeecYEBgaaQ4cOXbSuQYMGmeuvv/6ibU6dOlVt3vLly40ks2XLFve8GTNmGEnmrrvu8mj7yCOPGEnmiy++MMYYc/DgQRMYGGjmzJnj0e7LL78011xzjcf81NRUExsb69EuNTXVSDK5ubkXrftCP/74o4mIiDD9+/f3qt+FYmNjzbBhw8zx48fN8ePHzRdffGHGjh1rJJlHH33UGGNMbm6ukWRCQkLMsWPHPPoPGTLE9OrVy5SXl7vnVVVVmZtvvtl069bNPW/KlClGktm+fbt73rFjx4zL5ar2/AcNGmQGDRrkfvzf//3fRpKZN29etfqrqqqMMcYcP3681uPMHzXW5Nwxc/z48VrblJeXm8rKSo95ubm5xul0mueff949b+PGjUaSiYmJMSUlJe757733npFkXnnlFffz6Natm0lKSnLvC2POHudxcXFm6NCh7nmLFi2q9jzOzVu0aNFFn1tNUlJSjNPpNN9//73XfZsKLsE1IE6nU+PHj69z/xUrVui2225T27ZtdeLECfeUmJioyspKbdmy5YprPP/VbHl5uU6cOKGbbrpJkvT5559Xa5+Wlubx+NFHH5V09tWfJL3//vuqqqrSmDFjPGqOjIxUt27dtHHjxovWs3jxYhljvD77yczMVEFBgU9efX766adq37692rdvrz59+mjFihX6xS9+oRdffNGjXUpKivtSl3T2ctKGDRs0ZswYlZaWup97YWGhkpKSdODAAX377beSzu6vm266yePVePv27S+r/lWrViksLMy978934RnrheqrxsvldDoVEHD231ZlZaUKCwvVunVr9ejRo8bj78EHH1RwcLD78T333KOoqCj38bd7924dOHBA999/vwoLC93Pr6ysTEOGDNGWLVsueglx3LhxMsZ4ffZTUlKi//mf/9Edd9xx0TP8po5LcA1ITEzMFb2BfODAAe3Zs8fjn9z5jh07Vud1n/Pdd99p1qxZeuedd6qtr6br4N26dfN4HB8fr4CAAPdnKQ4cOCBjTLV25zRr1uyKa67J0qVLFRgYqHvvvfeK15WQkKDZs2fL4XCoZcuWuu6662r8pxIXF+fxODs7W8YYTZ8+XdOnT69x3ceOHVNMTIy++eYbJSQkVFveo0ePS9aXk5OjHj166JprvP9zr68aL1dVVZVeeeUVvf7668rNzVVlZaV72YWXPKXqx5/D4VDXrl09jj9JSk1NrXWbxcXFatu2rQ+q/7tVq1apvLz86r78JgKoQfH2Wvn5f3zS2T/OoUOH6qmnnqqxfffu3etc2zljxozR1q1b9eSTT6pv375q3bq1qqqqNHz48Mt6s/nCV9xVVVVyOBz64x//qMDAwGrtW7dufcU1X+iHH37Q6tWrlZiY6PX7bDUJCwtTYmLiJdtd+Ps9t7+mTZumpKSkGvt07dr1iuu7Eg2txn/913/V9OnT9ctf/lIvvPCCQkNDFRAQoClTptRpsMO5Pi+99JL69u1bYxt/HINLly6Vy+XSiBEjfL7uxoQAagTatm2roqIij3mnT59WXl6ex7z4+HidPHnysv4Z1sX333+vzMxMzZo1S88995x7/rlXkTU5cOCAxyv/7OxsVVVVuS+ZxcfHyxijuLg4nwTk5Vi7dq1KS0utv/rs0qWLpLNneZf6ncXGxta4n/fv33/J7cTHx2v79u06c+ZMrWeUtV2Kq68aL9fKlSt1++2363e/+53H/KKiIoWFhVVrf2E9xhhlZ2e7B1jEx8dLkkJCQvz2d3OhvLw8bdy4UePGjZPT6ayXbTZUvAfUCMTHx1d7/+att96qdgY0ZswYZWVl6ZNPPqm2jqKiIv34449XVMe5MxRjjMf8i42uW7Bggcfj1157TZKUnJwsSRo9erQCAwM1a9asaus1xtQ6vPucugzDXrZsmVq2bOkevWVLeHi4Bg8erDfffLPaiwlJOn78uPvnO+64Q9u2bdNnn33msfzcSL6LSUlJ0YkTJ/Qf//Ef1Zad2+fnPm924Qud+qrxcgUGBlY7TlasWOF+H+pCS5YsUWlpqfvxypUrlZeX5z7++vXrp/j4eL388ss6efJktf7nP7+a1GUY9jvvvKOqqirrL4AaAs6AGoFf/epXmjRpklJSUjR06FB98cUX+uSTT6q94nvyySe1du1ajRgxQuPGjVO/fv1UVlamL7/8UitXrtTBgwdrfJV4vuPHj2v27NnV5sfFxemBBx7QwIEDNXfuXJ05c0YxMTH69NNP3Z93qUlubq7uuusuDR8+XFlZWXr77bd1//33q0+fPpLOhuvs2bOVnp6ugwcPatSoUQoODlZubq5Wr16tiRMnatq0abWu39th2N99953++Mc/KiUlpdZLKwcPHlRcXJxSU1O1ePHiS67zSixYsEC33nqrevXqpQkTJqhLly4qKChQVlaWjhw54v58y1NPPaU//OEPGj58uB577DH3EOfY2Fjt2bPnott48MEHtWTJEk2dOlWfffaZbrvtNpWVlWn9+vV65JFHNHLkSAUFBekf/uEf9O6776p79+4KDQ1Vz5491bNnz3qp8Xzz5s2r9gHsgIAAPfvssxoxYoSef/55jR8/XjfffLO+/PJLLV261H2mdqHQ0FDdeuutGj9+vAoKCjR//nx17dpVEyZMcK/3v/7rv5ScnKzrr79e48ePV0xMjL799ltt3LhRISEh+vDDD2uttS7DsJcuXaro6GjuOCExDNuG2oZh1zYEurKy0jz99NMmLCzMtGzZ0iQlJZns7Oxqw7CNMaa0tNSkp6ebrl27mubNm5uwsDBz8803m5dfftmcPn36onWdGwpe0zRkyBBjjDFHjhwxd999t2nTpo1xuVzmZz/7mTl69Gi1IbznhtR+/fXX5p577jHBwcGmbdu2ZvLkyeaHH36otu1Vq1aZW2+91bRq1cq0atXKXHvttSYtLc3s37/f3cYXw7DfeOMNI8msXbu21jZffvmlkWSeeeaZS64vNjbW/PSnP71om3PDsF966aUal+fk5JgHH3zQREZGmmbNmpmYmBgzYsQIs3LlSo92e/bsMYMGDTItWrQwMTEx5oUXXjC/+93vLjkM25izw4r/5V/+xcTFxZlmzZqZyMhIc88995icnBx3m61bt5p+/fqZ5s2bV/t9+rrGmpw7ZmqaAgMDjTFnh2E/8cQTJioqygQFBZlbbrnFZGVlVXvO54ZhL1++3KSnp5vw8HATFBRkfvrTn5pvvvmm2rZ37dplRo8ebdq1a2ecTqeJjY01Y8aMMZmZme42vhiGvW/fPiPJTJ069bLaN3UOYy44nwWucq+//rqeeuop5eTk+GSQAoCa8R4QcIGNGzfqn//5nwkfwM84AwIAWMEZEADACgIIAGAFAQQAsIIAAgBY0eA+iFpVVaWjR48qODj4knfqBQA0PMYYlZaWKjo62n338po0uAA6evSoOnbsaLsMAMAVOnz48EW/7bXBXYI7/7s7AACN16X+n/stgBYsWKDOnTurRYsWSkhI8LhB4cVw2Q0AmoZL/T/3SwC9++67mjp1qmbMmKHPP/9cffr0UVJSkk++EA0A0ET44wZz/fv3N2lpae7HlZWVJjo62mRkZFyyb3Fxca03JGRiYmJiajxTcXHxRf/f+/wM6PTp09q5c6fHlzsFBAQoMTFRWVlZ1dpXVFSopKTEYwIANH0+D6ATJ06osrKy2o0cIyIilJ+fX619RkaGXC6Xe2IEHABcHayPgktPT1dxcbF7Onz4sO2SAAD1wOefAwoLC1NgYKAKCgo85hcUFCgyMrJae6fTedV/LzoAXI18fgbUvHlz9evXT5mZme55VVVVyszM1IABA3y9OQBAI+WXOyFMnTpVqampuuGGG9S/f3/Nnz9fZWVlGj9+vD82BwBohPwSQPfee6+OHz+u5557Tvn5+erbt68+/vhjvmESAODW4L4RtaSkRC6Xy3YZAIArVFxcrJCQkFqXWx8FBwC4OhFAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY4fMAmjlzphwOh8d07bXX+nozAIBG7hp/rPT666/X+vXr/76Ra/yyGQBAI+aXZLjmmmsUGRnpj1UDAJoIv7wHdODAAUVHR6tLly564IEHdOjQoVrbVlRUqKSkxGMCADR9Pg+ghIQELV68WB9//LEWLlyo3Nxc3XbbbSotLa2xfUZGhlwul3vq2LGjr0sCADRADmOM8ecGioqKFBsbq3nz5umhhx6qtryiokIVFRXuxyUlJYQQADQBxcXFCgkJqXW530cHtGnTRt27d1d2dnaNy51Op5xOp7/LAAA0MH7/HNDJkyeVk5OjqKgof28KANCI+DyApk2bps2bN+vgwYPaunWr7r77bgUGBuq+++7z9aYAAI2Yzy/BHTlyRPfdd58KCwvVvn173Xrrrdq2bZvat2/v600BABoxvw9C8FZJSYlcLpftMgAAV+hSgxC4FxwAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWOH3L6RD09W6dWuv+4SHh/uhkuq6dOlSp34jRozwcSU12717t9d9+vbt63WfoKAgr/tI0oQJE+rUz1tz5szxus/06dP9UAls4AwIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVnA37CYmPj7e6z433XRTnbb1+OOPe93nH//xH+u0rYbM4XB43ccY44dKfKeh14emgTMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCm5E2Mf/+7//udZ8777zTD5UAwMVxBgQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjiMMcZ2EecrKSmRy+WyXUajdezYMa/71HV/f/fdd173+c///E+v+xw5csTrPm+//bbXferK4XB43ae+/uwKCgrq1K9ly5Y+rqRmHTt29LrP0aNH/VAJ/KG4uFghISG1LucMCABgBQEEALDC6wDasmWL7rzzTkVHR8vhcGjNmjUey40xeu655xQVFaWgoCAlJibqwIEDvqoXANBEeB1AZWVl6tOnjxYsWFDj8rlz5+rVV1/VG2+8oe3bt6tVq1ZKSkpSeXn5FRcLAGg6vP5G1OTkZCUnJ9e4zBij+fPn6ze/+Y1GjhwpSVqyZIkiIiK0Zs0ajR079sqqBQA0GT59Dyg3N1f5+flKTEx0z3O5XEpISFBWVlaNfSoqKlRSUuIxAQCaPp8GUH5+viQpIiLCY35ERIR72YUyMjLkcrncU12GZQIAGh/ro+DS09NVXFzsng4fPmy7JABAPfBpAEVGRkqq/uG3goIC97ILOZ1OhYSEeEwAgKbPpwEUFxenyMhIZWZmuueVlJRo+/btGjBggC83BQBo5LweBXfy5EllZ2e7H+fm5mr37t0KDQ1Vp06dNGXKFM2ePVvdunVTXFycpk+frujoaI0aNcqXdQMAGjmvA2jHjh26/fbb3Y+nTp0qSUpNTdXixYv11FNPqaysTBMnTlRRUZFuvfVWffzxx2rRooXvqgYANHrcjLSJ6d27t9d9Lhy1eLnWrVtXp36oP6WlpXXqV5ebkW7dutXrPkOHDvW6Dx9qbzy4GSkAoEEigAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACq+/jgEN2549e2yXAD8ZOXKk133q82tQXn75Za/7cGfrqxtnQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBTcjBRqJ9u3be90nIKD+XmPm5+fX27bQNHAGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWcDNSoJEICwuzXQLgU5wBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAV3IwUsKB9+/Ze9/n1r3/th0pq9v3339dLH1zdOAMCAFhBAAEArPA6gLZs2aI777xT0dHRcjgcWrNmjcfycePGyeFweEzDhw/3Vb0AgCbC6wAqKytTnz59tGDBglrbDB8+XHl5ee5p+fLlV1QkAKDp8XoQQnJyspKTky/axul0KjIyss5FAQCaPr+8B7Rp0yaFh4erR48eevjhh1VYWFhr24qKCpWUlHhMAICmz+cBNHz4cC1ZskSZmZl68cUXtXnzZiUnJ6uysrLG9hkZGXK5XO6pY8eOvi4JANAA+fxzQGPHjnX/3KtXL/Xu3Vvx8fHatGmThgwZUq19enq6pk6d6n5cUlJCCAHAVcDvw7C7dOmisLAwZWdn17jc6XQqJCTEYwIANH1+D6AjR46osLBQUVFR/t4UAKAR8foS3MmTJz3OZnJzc7V7926FhoYqNDRUs2bNUkpKiiIjI5WTk6OnnnpKXbt2VVJSkk8LBwA0bl4H0I4dO3T77be7H597/yY1NVULFy7Unj179Pvf/15FRUWKjo7WsGHD9MILL8jpdPquagBAo+d1AA0ePFjGmFqXf/LJJ1dUEHA1mDdvntd9OnXq5IdKavbee+953eevf/2rHypBU8a94AAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGCFz7+SG8CluVwur/s4HA4/VFKzLVu21Nu2cPXiDAgAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArOBmpMAVCgoK8rpPu3btvO5jjPG6T3Fxsdd9JOlPf/pTnfoB3uAMCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCs4GakwBVKTEz0us9NN93kh0qqq6ioqFO/b7/91seVANVxBgQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVnAzUuAKrVq1ynYJtfrFL35huwSgVpwBAQCsIIAAAFZ4FUAZGRm68cYbFRwcrPDwcI0aNUr79+/3aFNeXq60tDS1a9dOrVu3VkpKigoKCnxaNACg8fMqgDZv3qy0tDRt27ZN69at05kzZzRs2DCVlZW52zz++OP68MMPtWLFCm3evFlHjx7V6NGjfV44AKBxcxhjTF07Hz9+XOHh4dq8ebMGDhyo4uJitW/fXsuWLdM999wjSdq3b5+uu+46ZWVlXda3QJaUlMjlctW1JKDenT592us+gYGBfqikuqSkpDr1W79+vY8rwdWouLhYISEhtS6/oveAiouLJUmhoaGSpJ07d+rMmTMeX1F87bXXqlOnTsrKyqpxHRUVFSopKfGYAABNX50DqKqqSlOmTNEtt9yinj17SpLy8/PVvHlztWnTxqNtRESE8vPza1xPRkaGXC6Xe+rYsWNdSwIANCJ1DqC0tDTt3btX77zzzhUVkJ6eruLiYvd0+PDhK1ofAKBxqNMHUSdPnqyPPvpIW7ZsUYcOHdzzIyMjdfr0aRUVFXmcBRUUFCgyMrLGdTmdTjmdzrqUAQBoxLw6AzLGaPLkyVq9erU2bNiguLg4j+X9+vVTs2bNlJmZ6Z63f/9+HTp0SAMGDPBNxQCAJsGrM6C0tDQtW7ZMH3zwgYKDg93v67hcLgUFBcnlcumhhx7S1KlTFRoaqpCQED366KMaMGDAZY2AAwBcPbwKoIULF0qSBg8e7DF/0aJFGjdunCTpt7/9rQICApSSkqKKigolJSXp9ddf90mxAICm44o+B+QPfA4IjU1VVZXXferyZ3f8+HGv+3Tu3NnrPtLZO5oAV8qvnwMCAKCuCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsKJO34gKoP6tXbvW6z7c1RoNGWdAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFNyMFzpOWlma7hFqdOXPGdgmAT3EGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWcDNS4Dypqale93E4HF73McZ43WfhwoVe9wEaMs6AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKbkYKnGfp0qVe97nhhhv8UEl1Xbp08brP3r17/VAJ4BucAQEArCCAAABWeBVAGRkZuvHGGxUcHKzw8HCNGjVK+/fv92gzePBgORwOj2nSpEk+LRoA0Ph5FUCbN29WWlqatm3bpnXr1unMmTMaNmyYysrKPNpNmDBBeXl57mnu3Lk+LRoA0Ph5NQjh448/9ni8ePFihYeHa+fOnRo4cKB7fsuWLRUZGembCgEATdIVvQdUXFwsSQoNDfWYv3TpUoWFhalnz55KT0/XqVOnal1HRUWFSkpKPCYAQNNX52HYVVVVmjJlim655Rb17NnTPf/+++9XbGysoqOjtWfPHj399NPav3+/3n///RrXk5GRoVmzZtW1DABAI1XnAEpLS9PevXv15z//2WP+xIkT3T/36tVLUVFRGjJkiHJychQfH19tPenp6Zo6dar7cUlJiTp27FjXsgAAjUSdAmjy5Mn66KOPtGXLFnXo0OGibRMSEiRJ2dnZNQaQ0+mU0+msSxkAgEbMqwAyxujRRx/V6tWrtWnTJsXFxV2yz+7duyVJUVFRdSoQANA0eRVAaWlpWrZsmT744AMFBwcrPz9fkuRyuRQUFKScnBwtW7ZMd9xxh9q1a6c9e/bo8ccf18CBA9W7d2+/PAEAQOPkVQAtXLhQ0tkPm55v0aJFGjdunJo3b67169dr/vz5KisrU8eOHZWSkqLf/OY3PisYANA0eH0J7mI6duyozZs3X1FBAICrA3fDBs5z7j1Lf/fp06eP131iYmK87gM0ZNyMFABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCscJhL3eK6npWUlMjlctkuAwBwhYqLixUSElLrcs6AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQ0ugBrYrekAAHV0qf/nDS6ASktLbZcAAPCBS/0/b3B3w66qqtLRo0cVHBwsh8PhsaykpEQdO3bU4cOHL3qH1aaO/XAW++Es9sNZ7IezGsJ+MMaotLRU0dHRCgio/Tznmnqs6bIEBASoQ4cOF20TEhJyVR9g57AfzmI/nMV+OIv9cJbt/XA5X6vT4C7BAQCuDgQQAMCKRhVATqdTM2bMkNPptF2KVeyHs9gPZ7EfzmI/nNWY9kODG4QAALg6NKozIABA00EAAQCsIIAAAFYQQAAAKwggAIAVjSaAFixYoM6dO6tFixZKSEjQZ599Zrukejdz5kw5HA6P6dprr7Vdlt9t2bJFd955p6Kjo+VwOLRmzRqP5cYYPffcc4qKilJQUJASExN14MABO8X60aX2w7hx46odH8OHD7dTrJ9kZGToxhtvVHBwsMLDwzVq1Cjt37/fo015ebnS0tLUrl07tW7dWikpKSooKLBUsX9czn4YPHhwteNh0qRJliquWaMIoHfffVdTp07VjBkz9Pnnn6tPnz5KSkrSsWPHbJdW766//nrl5eW5pz//+c+2S/K7srIy9enTRwsWLKhx+dy5c/Xqq6/qjTfe0Pbt29WqVSslJSWpvLy8niv1r0vtB0kaPny4x/GxfPnyeqzQ/zZv3qy0tDRt27ZN69at05kzZzRs2DCVlZW52zz++OP68MMPtWLFCm3evFlHjx7V6NGjLVbte5ezHyRpwoQJHsfD3LlzLVVcC9MI9O/f36SlpbkfV1ZWmujoaJORkWGxqvo3Y8YM06dPH9tlWCXJrF692v24qqrKREZGmpdeesk9r6ioyDidTrN8+XILFdaPC/eDMcakpqaakSNHWqnHlmPHjhlJZvPmzcaYs7/7Zs2amRUrVrjb/N///Z+RZLKysmyV6XcX7gdjjBk0aJB57LHH7BV1GRr8GdDp06e1c+dOJSYmuucFBAQoMTFRWVlZFiuz48CBA4qOjlaXLl30wAMP6NChQ7ZLsio3N1f5+fkex4fL5VJCQsJVeXxs2rRJ4eHh6tGjhx5++GEVFhbaLsmviouLJUmhoaGSpJ07d+rMmTMex8O1116rTp06Nenj4cL9cM7SpUsVFhamnj17Kj09XadOnbJRXq0a3N2wL3TixAlVVlYqIiLCY35ERIT27dtnqSo7EhIStHjxYvXo0UN5eXmaNWuWbrvtNu3du1fBwcG2y7MiPz9fkmo8Ps4tu1oMHz5co0ePVlxcnHJycvTss88qOTlZWVlZCgwMtF2ez1VVVWnKlCm65ZZb1LNnT0lnj4fmzZurTZs2Hm2b8vFQ036QpPvvv1+xsbGKjo7Wnj179PTTT2v//v16//33LVbrqcEHEP4uOTnZ/XPv3r2VkJCg2NhYvffee3rooYcsVoaGYOzYse6fe/Xqpd69eys+Pl6bNm3SkCFDLFbmH2lpadq7d+9V8T7oxdS2HyZOnOj+uVevXoqKitKQIUOUk5Oj+Pj4+i6zRg3+ElxYWJgCAwOrjWIpKChQZGSkpaoahjZt2qh79+7Kzs62XYo1544Bjo/qunTporCwsCZ5fEyePFkfffSRNm7c6PH9YZGRkTp9+rSKioo82jfV46G2/VCThIQESWpQx0ODD6DmzZurX79+yszMdM+rqqpSZmamBgwYYLEy+06ePKmcnBxFRUXZLsWauLg4RUZGehwfJSUl2r59+1V/fBw5ckSFhYVN6vgwxmjy5MlavXq1NmzYoLi4OI/l/fr1U7NmzTyOh/379+vQoUNN6ni41H6oye7duyWpYR0PtkdBXI533nnHOJ1Os3jxYvP111+biRMnmjZt2pj8/HzbpdWrJ554wmzatMnk5uaav/zlLyYxMdGEhYWZY8eO2S7Nr0pLS82uXbvMrl27jCQzb948s2vXLvPNN98YY4z5t3/7N9OmTRvzwQcfmD179piRI0eauLg488MPP1iu3Lcuth9KS0vNtGnTTFZWlsnNzTXr1683//RP/2S6detmysvLbZfuMw8//LBxuVxm06ZNJi8vzz2dOnXK3WbSpEmmU6dOZsOGDWbHjh1mwIABZsCAARar9r1L7Yfs7Gzz/PPPmx07dpjc3FzzwQcfmC5dupiBAwdartxTowggY4x57bXXTKdOnUzz5s1N//79zbZt22yXVO/uvfdeExUVZZo3b25iYmLMvffea7Kzs22X5XcbN240kqpNqampxpizQ7GnT59uIiIijNPpNEOGDDH79++3W7QfXGw/nDp1ygwbNsy0b9/eNGvWzMTGxpoJEyY0uRdpNT1/SWbRokXuNj/88IN55JFHTNu2bU3Lli3N3XffbfLy8uwV7QeX2g+HDh0yAwcONKGhocbpdJquXbuaJ5980hQXF9st/AJ8HxAAwIoG/x4QAKBpIoAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK/4fVL5NJ3VWkpkAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo70lEQVR4nO3de3xNd77/8feWskMkm8idIEJp3XqOEoqgUpEpSnWUaU+jVYaJtjjVaeZxSp12mtJ2xmiddnSm1KUXrdKZPjp6FGHONOHQqjJDxURRErdmJ6IJku/vD8f+2RKXHTu+Sbyej8f38che6/td67NXVvLOumRthzHGCACA66ye7QIAADcmAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAgh+9+yzz8rhcOjYsWN+W+bYsWPVunVrvy2vLsjMzJTD4VBmZqZnWk3bTpXVWN327dsnh8Ohl19+2W/LtPE+bgQEUDVzOBxX1Wzv2P3791enTp2s1lCd3n//fT344INq166dHA6H+vfvf83L7N+/v9f3MDQ0VN27d9dbb72l8vLyay/6OnrhhRe0atUqa+tftGiRHA6HtmzZYq2G6rR7925NnTpVd9xxhwIDA+VwOLRv3z7bZVl3k+0C6rolS5Z4vV68eLHWrFlTYfott9xyPcu64bz++uvaunWrunfvruPHj/ttuS1atFBGRoYk6ejRo1q8eLHGjRunb7/9Vi+++KLf1nO13nzzzSqF3wsvvKD77rtPw4cP939RUFZWlubNm6dbb71Vt9xyi7Zt22a7pBqBAKpmDz74oNfr7OxsrVmzpsL0i506dUqNGjWqztJuKEuWLFHz5s1Vr149vx7puVwur+/lz3/+c7Vv316vvfaannvuOdWvX7/CmPLycp0+fVqBgYF+q+O8ytYH+4YNG6aCggIFBwfr5ZdfJoD+D6fgaoDzp7+2bt2qxMRENWrUSL/61a8knTuF9+yzz1YY07p1a40dO9ZrWkFBgaZMmaLY2Fg5nU61bdtWs2fP9tvpoO3bt2vs2LFq06aNAgMDFRUVpUceeeSSRxTHjh3TqFGjFBISombNmumJJ55QSUlJhX5Lly5Vt27d1LBhQ4WGhmr06NE6cODAFes5fPiwdu3apTNnzlyxb2xsrOrVq/7dvVGjRurZs6eKi4t19OhRSee+h5MnT9ayZcvUsWNHOZ1OrV69WpL0/fff65FHHlFkZKScTqc6duyot956q8JyDx48qOHDhysoKEgRERGaOnWqSktLK/Sr7BpQeXm5fve736lz584KDAxUeHi4Bg8e7Dnd5XA4VFxcrLfffttzOvHCfcvfNVbV6dOnNWPGDHXr1k0ul0tBQUHq27ev1q9ff8kxv/3tb9WqVSs1bNhQ/fr1044dOyr02bVrl+677z6FhoYqMDBQt99+u/70pz9dsZ5Tp05p165dV3WtMzQ0VMHBwVfsd6PhCKiGOH78uFJSUjR69Gg9+OCDioyM9Gn8qVOn1K9fP33//ff6+c9/rpYtW+qLL75Qenq6Dh8+rLlz515zjWvWrNE///lPPfzww4qKitLOnTu1YMEC7dy5U9nZ2XI4HF79R40apdatWysjI0PZ2dmaN2+efvjhBy1evNjT59e//rWeeeYZjRo1So8++qiOHj2qV199VYmJifrqq6/UpEmTS9aTnp6ut99+W7m5uTXqwvs///lPBQQEeNW+bt06LV++XJMnT1ZYWJhat26t/Px89ezZ0xNQ4eHh+stf/qJx48apsLBQU6ZMkST9+OOPGjhwoPbv36/HH39cMTExWrJkidatW3dV9YwbN06LFi1SSkqKHn30UZ09e1Z//etflZ2drdtvv11LlizRo48+qh49emjChAmSpPj4eEm6bjVejcLCQv3hD3/QmDFjNH78eBUVFemPf/yjkpOTtXnzZt12221e/RcvXqyioiKlpaWppKREv/vd73TnnXfqm2++8fx87dy5U71791bz5s319NNPKygoSMuXL9fw4cO1YsUKjRgx4pL1bN68WQMGDNDMmTMr/SMRV8HgukpLSzMXb/Z+/foZSeaNN96o0F+SmTlzZoXprVq1MqmpqZ7Xzz33nAkKCjLffvutV7+nn37aBAQEmP3791+2rn79+pmOHTtets+pU6cqTHv33XeNJLNx40bPtJkzZxpJZtiwYV59f/GLXxhJ5uuvvzbGGLNv3z4TEBBgfv3rX3v1++abb8xNN93kNT01NdW0atXKq19qaqqRZHJzcy9b98U6duxo+vXr59OYyvTr18906NDBHD161Bw9etT84x//MI8//riRZIYOHerpJ8nUq1fP7Ny502v8uHHjTHR0tDl27JjX9NGjRxuXy+XZ3nPnzjWSzPLlyz19iouLTdu2bY0ks379es/0i7fTunXrjCTz+OOPV6i/vLzc83VQUJDX/lSdNVZm4cKFRpL53//930v2OXv2rCktLfWa9sMPP5jIyEjzyCOPeKbl5uYaSaZhw4bm4MGDnumbNm0ykszUqVM90wYOHGg6d+5sSkpKPNPKy8vNHXfcYdq1a+eZtn79+grv4/y0yn4+L+ell16q0n5bF3EKroZwOp16+OGHqzz+gw8+UN++fdW0aVMdO3bM05KSklRWVqaNGzdec40NGzb0fF1SUqJjx46pZ8+ekqQvv/yyQv+0tDSv14899pgk6dNPP5UkffTRRyovL9eoUaO8ao6KilK7du0ue2pFOnfnlDHG6tHPrl27FB4ervDwcN1yyy169dVXdffdd1c4RdWvXz/deuutntfGGK1YsUJDhw6VMcbr/ScnJ8vtdnu26aeffqro6Gjdd999nvGNGjXyHK1czooVK+RwODRz5swK8y4+Yr3Y9arxagUEBKhBgwaSzp1WPHHihM6ePavbb7+90v1v+PDhat68ued1jx49lJCQ4Nn/Tpw4oXXr1mnUqFEqKiryvLfjx48rOTlZe/bs0ffff3/Jevr37y9jDEc/14BTcDVE8+bNPT9cVbFnzx5t375d4eHhlc4/cuRIlZd93okTJzRr1iy99957FZbndrsr9G/Xrp3X6/j4eNWrV89z++mePXtkjKnQ77zacEG9devWevPNN+VwOBQYGKh27dopIiKiQr+4uDiv10ePHlVBQYEWLFigBQsWVLrs89v4u+++U9u2bSsERvv27a9Y3969exUTE6PQ0NCrfUvXvUZfvP3223rllVcqXPu7ePtKFfc/Sbr55pu1fPlySVJOTo6MMXrmmWf0zDPPVLq+I0eOeIUY/IsAqiEuPLq4GmVlZV6vy8vLddddd+mpp56qtP/NN99c5drOGzVqlL744gtNnz5dt912mxo3bqzy8nINHjz4qm50uPiXU3l5uRwOh/7yl78oICCgQv/GjRtfc83VLSgoSElJSVfsd/H39/z2evDBB5WamlrpmC5dulx7gdegptW4dOlSjR07VsOHD9f06dMVERGhgIAAZWRkaO/evT4v7/z7e/LJJ5WcnFxpn7Zt215Tzbg8AqiGa9q0qQoKCrymnT59WocPH/aaFh8fr5MnT17VL8Oq+OGHH7R27VrNmjVLM2bM8Ezfs2fPJcfs2bPH6y/TnJwclZeXe06ZxcfHyxijuLg4vwRkbRIeHq7g4GCVlZVd8XvWqlUr7dixQ8YYrxDfvXv3FdcTHx+vzz77TCdOnLjsUVBlp+OuV41X68MPP1SbNm300Ucfea2jstOLUuX75rfffuvZ/9q0aSPp3JF2df3c4PK4BlTDxcfHV7h+s2DBggpHQKNGjVJWVpY+++yzCssoKCjQ2bNnr6mO80coxhiv6Ze7u27+/Pler1999VVJUkpKiiTp3nvvVUBAgGbNmlVhucaYK/7DqC+3Ydc0AQEBGjlypFasWFHprcHnb+GWpJ/85Cc6dOiQPvzwQ8+0U6dOXfK02IVGjhwpY4xmzZpVYd6F2zwoKKjCHzrXq8arVdk+uGnTJmVlZVXaf9WqVV7XcDZv3qxNmzZ59r+IiAj1799fv//97yv8QSd5v7/K+HIbNirHEVAN9+ijj2rixIkaOXKk7rrrLn399df67LPPFBYW5tVv+vTp+tOf/qQhQ4Zo7Nix6tatm4qLi/XNN9/oww8/1L59+yqMudjRo0f1/PPPV5geFxenBx54QImJiZozZ47OnDmj5s2b67//+7+Vm5t7yeXl5uZq2LBhGjx4sLKysrR06VL97Gc/U9euXSWdC9fnn39e6enp2rdvn4YPH67g4GDl5uZq5cqVmjBhgp588slLLt+X27A3btzoCfKjR4+quLjY814TExOVmJjo6etwONSvX79qfzzSiy++qPXr1yshIUHjx4/XrbfeqhMnTujLL7/U559/rhMnTkiSxo8fr9dee00PPfSQtm7dqujoaC1ZsuSq/lF5wIAB+rd/+zfNmzdPe/bs8Zwu/etf/6oBAwZo8uTJkqRu3brp888/129+8xvFxMQoLi5OCQkJ16XGC7311lue/5G60BNPPKEhQ4boo48+0ogRI3T33XcrNzdXb7zxhm699VadPHmywpi2bduqT58+mjRpkkpLSzV37lw1a9bM6zT1/Pnz1adPH3Xu3Fnjx49XmzZtlJ+fr6ysLB08eFBff/31JWv15TZst9vt+QPsb3/7myTptddeU5MmTdSkSRPP9+GGc93vu7vBXeo27EvdAl1WVmZ++ctfmrCwMNOoUSOTnJxscnJyKtyGbYwxRUVFJj093bRt29Y0aNDAhIWFmTvuuMO8/PLL5vTp05et6/yt4JW1gQMHGmOMOXjwoBkxYoRp0qSJcblc5qc//ak5dOhQhVtRz9+G/fe//93cd999Jjg42DRt2tRMnjzZ/PjjjxXWvWLFCtOnTx8TFBRkgoKCTIcOHUxaWprZvXu3p8+13oZ9vqbK2oW1FxUVGUlm9OjRV1zm1dy6bsy527DT0tIqnZefn2/S0tJMbGysqV+/vomKijIDBw40CxYs8Or33XffmWHDhplGjRqZsLAw88QTT5jVq1df8TZsY87dvvzSSy+ZDh06mAYNGpjw8HCTkpJitm7d6umza9cuk5iYaBo2bGgkee1b/q6xMudvw75UO3DggCkvLzcvvPCCadWqlXE6neZf/uVfzCeffFLhPZ+/Dfull14yr7zyiomNjTVOp9P07dvX8y8AF9q7d6956KGHTFRUlKlfv75p3ry5GTJkiPnwww89fa71NuzzNVXWLv5+3Ugcxlx07gO4gX366acaMmSIvv76a3Xu3Nl2OUCdxjUg4ALr16/X6NGjCR/gOuAICABgBUdAAAArCCAAgBUEEADACgIIAGBFjftH1PLych06dEjBwcFXfFovAKDmMcaoqKhIMTExl/0gyBoXQIcOHVJsbKztMgAA1+jAgQNq0aLFJefXuFNwfGwtANQNV/p9Xm0BNH/+fLVu3VqBgYFKSEjQ5s2br2ocp90AoG640u/zagmg999/X9OmTdPMmTP15ZdfqmvXrkpOTvbLh6IBAOqI6njAXI8ePbwevlhWVmZiYmJMRkbGFce63e7LPpSQRqPRaLWjud3uy/6+9/sR0OnTp7V161avD3iqV6+ekpKSKv3cjtLSUhUWFno1AEDd5/cAOnbsmMrKyhQZGek1PTIyUnl5eRX6Z2RkyOVyeRp3wAHAjcH6XXDp6elyu92eduDAAdslAQCuA7//H1BYWJgCAgKUn5/vNT0/P19RUVEV+judTjmdTn+XAQCo4fx+BNSgQQN169ZNa9eu9UwrLy/X2rVr1atXL3+vDgBQS1XLkxCmTZum1NRU3X777erRo4fmzp2r4uJiPfzww9WxOgBALVQtAXT//ffr6NGjmjFjhvLy8nTbbbdp9erVFW5MAADcuGrcJ6IWFhbK5XLZLgMAcI3cbrdCQkIuOd/6XXAAgBsTAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBU32S4AwI0rODjY5zGzZ8/2ecykSZN8HiNJX3zxhc9jevfuXaV13Yg4AgIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK3gYKQC/GDNmjM9jBgwY4POYcePG+TymvLzc5zHXMg5XhyMgAIAVBBAAwAq/B9Czzz4rh8Ph1Tp06ODv1QAAarlquQbUsWNHff755/9/JTdxqQkA4K1akuGmm25SVFRUdSwaAFBHVMs1oD179igmJkZt2rTRAw88oP3791+yb2lpqQoLC70aAKDu83sAJSQkaNGiRVq9erVef/115ebmqm/fvioqKqq0f0ZGhlwul6fFxsb6uyQAQA3k9wBKSUnRT3/6U3Xp0kXJycn69NNPVVBQoOXLl1faPz09XW6329MOHDjg75IAADVQtd8d0KRJE918883KycmpdL7T6ZTT6azuMgAANUy1/x/QyZMntXfvXkVHR1f3qgAAtYjfA+jJJ5/Uhg0btG/fPn3xxRcaMWKEAgICqvSYDgBA3eX3U3AHDx7UmDFjdPz4cYWHh6tPnz7Kzs5WeHi4v1cFAKjF/B5A7733nr8XCeA6GzFihM9j5s2b5/OY0NBQn8eg7uBZcAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgRbV/IB0Aexo3blylcXfeeafPY+rig0U3bdpku4Q6jSMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWMHTsIFaYsyYMT6Pueuuu6q0rtTU1CqNq6nefPPNKo17+umn/VwJLsQREADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwcNIAQsCAwN9HjNs2DCfx4waNcrnMdfT2bNnfR7zhz/8wecx6enpPo+RqlYfrh5HQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQ8jBa5Ro0aNfB4ze/Zsn8fU9AeLVsWOHTt8HpOWllYNlcAGjoAAAFYQQAAAK3wOoI0bN2ro0KGKiYmRw+HQqlWrvOYbYzRjxgxFR0erYcOGSkpK0p49e/xVLwCgjvA5gIqLi9W1a1fNnz+/0vlz5szRvHnz9MYbb2jTpk0KCgpScnKySkpKrrlYAEDd4fNNCCkpKUpJSal0njFGc+fO1X/8x3/onnvukSQtXrxYkZGRWrVqlUaPHn1t1QIA6gy/XgPKzc1VXl6ekpKSPNNcLpcSEhKUlZVV6ZjS0lIVFhZ6NQBA3efXAMrLy5MkRUZGek2PjIz0zLtYRkaGXC6Xp8XGxvqzJABADWX9Lrj09HS53W5PO3DggO2SAADXgV8DKCoqSpKUn5/vNT0/P98z72JOp1MhISFeDQBQ9/k1gOLi4hQVFaW1a9d6phUWFmrTpk3q1auXP1cFAKjlfL4L7uTJk8rJyfG8zs3N1bZt2xQaGqqWLVtqypQpev7559WuXTvFxcXpmWeeUUxMjIYPH+7PugEAtZzPAbRlyxYNGDDA83ratGmSpNTUVC1atEhPPfWUiouLNWHCBBUUFKhPnz5avXq1AgMD/Vc1AKDWcxhjjO0iLlRYWCiXy2W7DOCqvfLKKz6PmTJliv8LqYUefvhhn8csXry4GipBdXC73Ze9rm/9LjgAwI2JAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK3z+OAYA3oYMGWK7BL87efKkz2Oq8oTvZcuW+TwGdQdHQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQ8jBS7Qs2dPn8cEBwdXQyV2LV261OcxCxcurIZKUJdxBAQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVvAwUuACqampPo+JjIyshkr8Iy8vr0rjFi9e7OdKgIo4AgIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK3gYKWq8gIAAn8eMGzeuSut64IEHqjTueqjKg0UHDRpUpXXt3LmzSuMAX3AEBACwggACAFjhcwBt3LhRQ4cOVUxMjBwOh1atWuU1f+zYsXI4HF5t8ODB/qoXAFBH+BxAxcXF6tq1q+bPn3/JPoMHD9bhw4c97d13372mIgEAdY/PNyGkpKQoJSXlsn2cTqeioqKqXBQAoO6rlmtAmZmZioiIUPv27TVp0iQdP378kn1LS0tVWFjo1QAAdZ/fA2jw4MFavHix1q5dq9mzZ2vDhg1KSUlRWVlZpf0zMjLkcrk8LTY21t8lAQBqIL//H9Do0aM9X3fu3FldunRRfHy8MjMzNXDgwAr909PTNW3aNM/rwsJCQggAbgDVfht2mzZtFBYWppycnErnO51OhYSEeDUAQN1X7QF08OBBHT9+XNHR0dW9KgBALeLzKbiTJ096Hc3k5uZq27ZtCg0NVWhoqGbNmqWRI0cqKipKe/fu1VNPPaW2bdsqOTnZr4UDAGo3nwNoy5YtGjBggOf1+es3qampev3117V9+3a9/fbbKigoUExMjAYNGqTnnntOTqfTf1UDAGo9hzHG2C7iQoWFhXK5XLbLQA3SrFkzn8ccOXKkGiqxa+zYsT6PWbJkif8LAa6S2+2+7HV9ngUHALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK/z+kdyAv82YMcN2CX6XmZnp85iNGzf6vxDAIo6AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKHkaKKktOTvZ5zLJly3weExIS4vOY66kqDwkdNmyYz2OKi4t9HgPUZBwBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVPIwUGjNmTJXG3XnnnT6Padq0aZXWVZONHz/e5zE8WBTgCAgAYAkBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArOBhpHXMQw895POY3/72t1VaV5MmTao0riZ77bXXfB5z+PDhaqgEqPs4AgIAWEEAAQCs8CmAMjIy1L17dwUHBysiIkLDhw/X7t27vfqUlJQoLS1NzZo1U+PGjTVy5Ejl5+f7tWgAQO3nUwBt2LBBaWlpys7O1po1a3TmzBkNGjTI68O1pk6dqj//+c/64IMPtGHDBh06dEj33nuv3wsHANRuPt2EsHr1aq/XixYtUkREhLZu3arExES53W798Y9/1DvvvOP5tMyFCxfqlltuUXZ2tnr27Om/ygEAtdo1XQNyu92SpNDQUEnS1q1bdebMGSUlJXn6dOjQQS1btlRWVlalyygtLVVhYaFXAwDUfVUOoPLyck2ZMkW9e/dWp06dJEl5eXlq0KBBhdtzIyMjlZeXV+lyMjIy5HK5PC02NraqJQEAapEqB1BaWpp27Nih995775oKSE9Pl9vt9rQDBw5c0/IAALVDlf4RdfLkyfrkk0+0ceNGtWjRwjM9KipKp0+fVkFBgddRUH5+vqKioipdltPplNPprEoZAIBazKcjIGOMJk+erJUrV2rdunWKi4vzmt+tWzfVr19fa9eu9UzbvXu39u/fr169evmnYgBAneDTEVBaWpreeecdffzxxwoODvZc13G5XGrYsKFcLpfGjRunadOmKTQ0VCEhIXrsscfUq1cv7oADAHjxKYBef/11SVL//v29pi9cuFBjx46VdO65YvXq1dPIkSNVWlqq5ORk/dd//ZdfigUA1B0+BZAx5op9AgMDNX/+fM2fP7/KRaHq2rVr5/OYuvhQ0czMzCqNmz17ts9jLvxHbABXj2fBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwIoqfSIqUNNFRERUaVxMTIzPYw4dOlSldQE3Oo6AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKHkaKGq+wsNDnMaNHj67Sunbu3FmlcQB8xxEQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjhMMYY20VcqLCwUC6Xy3YZAIBr5Ha7FRIScsn5HAEBAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsMKnAMrIyFD37t0VHBysiIgIDR8+XLt37/bq079/fzkcDq82ceJEvxYNAKj9fAqgDRs2KC0tTdnZ2VqzZo3OnDmjQYMGqbi42Kvf+PHjdfjwYU+bM2eOX4sGANR+N/nSefXq1V6vFy1apIiICG3dulWJiYme6Y0aNVJUVJR/KgQA1EnXdA3I7XZLkkJDQ72mL1u2TGFhYerUqZPS09N16tSpSy6jtLRUhYWFXg0AcAMwVVRWVmbuvvtu07t3b6/pv//9783q1avN9u3bzdKlS03z5s3NiBEjLrmcmTNnGkk0Go1Gq2PN7XZfNkeqHEATJ040rVq1MgcOHLhsv7Vr1xpJJicnp9L5JSUlxu12e9qBAwesbzQajUajXXu7UgD5dA3ovMmTJ+uTTz7Rxo0b1aJFi8v2TUhIkCTl5OQoPj6+wnyn0ymn01mVMgAAtZhPAWSM0WOPPaaVK1cqMzNTcXFxVxyzbds2SVJ0dHSVCgQA1E0+BVBaWpreeecdffzxxwoODlZeXp4kyeVyqWHDhtq7d6/eeecd/eQnP1GzZs20fft2TZ06VYmJierSpUu1vAEAQC3ly3UfXeI838KFC40xxuzfv98kJiaa0NBQ43Q6Tdu2bc306dOveB7wQm632/p5SxqNRqNde7vS737H/wVLjVFYWCiXy2W7DADANXK73QoJCbnkfJ4FBwCwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwosYFkDHGdgkAAD+40u/zGhdARUVFtksAAPjBlX6fO0wNO+QoLy/XoUOHFBwcLIfD4TWvsLBQsbGxOnDggEJCQixVaB/b4Ry2wzlsh3PYDufUhO1gjFFRUZFiYmJUr96lj3Nuuo41XZV69eqpRYsWl+0TEhJyQ+9g57EdzmE7nMN2OIftcI7t7eByua7Yp8adggMA3BgIIACAFbUqgJxOp2bOnCmn02m7FKvYDuewHc5hO5zDdjinNm2HGncTAgDgxlCrjoAAAHUHAQQAsIIAAgBYQQABAKwggAAAVtSaAJo/f75at26twMBAJSQkaPPmzbZLuu6effZZORwOr9ahQwfbZVW7jRs3aujQoYqJiZHD4dCqVau85htjNGPGDEVHR6thw4ZKSkrSnj177BRbja60HcaOHVth/xg8eLCdYqtJRkaGunfvruDgYEVERGj48OHavXu3V5+SkhKlpaWpWbNmaty4sUaOHKn8/HxLFVePq9kO/fv3r7A/TJw40VLFlasVAfT+++9r2rRpmjlzpr788kt17dpVycnJOnLkiO3SrruOHTvq8OHDnvY///M/tkuqdsXFxeratavmz59f6fw5c+Zo3rx5euONN7Rp0yYFBQUpOTlZJSUl17nS6nWl7SBJgwcP9to/3n333etYYfXbsGGD0tLSlJ2drTVr1ujMmTMaNGiQiouLPX2mTp2qP//5z/rggw+0YcMGHTp0SPfee6/Fqv3varaDJI0fP95rf5gzZ46lii/B1AI9evQwaWlpntdlZWUmJibGZGRkWKzq+ps5c6bp2rWr7TKskmRWrlzpeV1eXm6ioqLMSy+95JlWUFBgnE6neffddy1UeH1cvB2MMSY1NdXcc889Vuqx5ciRI0aS2bBhgzHm3Pe+fv365oMPPvD0+cc//mEkmaysLFtlVruLt4MxxvTr18888cQT9oq6CjX+COj06dPaunWrkpKSPNPq1aunpKQkZWVlWazMjj179igmJkZt2rTRAw88oP3799suyarc3Fzl5eV57R8ul0sJCQk35P6RmZmpiIgItW/fXpMmTdLx48dtl1St3G63JCk0NFSStHXrVp05c8Zrf+jQoYNatmxZp/eHi7fDecuWLVNYWJg6deqk9PR0nTp1ykZ5l1TjnoZ9sWPHjqmsrEyRkZFe0yMjI7Vr1y5LVdmRkJCgRYsWqX379jp8+LBmzZqlvn37aseOHQoODrZdnhV5eXmSVOn+cX7ejWLw4MG69957FRcXp7179+pXv/qVUlJSlJWVpYCAANvl+V15ebmmTJmi3r17q1OnTpLO7Q8NGjRQkyZNvPrW5f2hsu0gST/72c/UqlUrxcTEaPv27frlL3+p3bt366OPPrJYrbcaH0D4/1JSUjxfd+nSRQkJCWrVqpWWL1+ucePGWawMNcHo0aM9X3fu3FldunRRfHy8MjMzNXDgQIuVVY+0tDTt2LHjhrgOejmX2g4TJkzwfN25c2dFR0dr4MCB2rt3r+Lj4693mZWq8afgwsLCFBAQUOEulvz8fEVFRVmqqmZo0qSJbr75ZuXk5NguxZrz+wD7R0Vt2rRRWFhYndw/Jk+erE8++UTr16/3+vywqKgonT59WgUFBV796+r+cKntUJmEhARJqlH7Q40PoAYNGqhbt25au3atZ1p5ebnWrl2rXr16WazMvpMnT2rv3r2Kjo62XYo1cXFxioqK8to/CgsLtWnTpht+/zh48KCOHz9ep/YPY4wmT56slStXat26dYqLi/Oa361bN9WvX99rf9i9e7f2799fp/aHK22Hymzbtk2Satb+YPsuiKvx3nvvGafTaRYtWmT+/ve/mwkTJpgmTZqYvLw826VdV//+7/9uMjMzTW5urvnb3/5mkpKSTFhYmDly5Ijt0qpVUVGR+eqrr8xXX31lJJnf/OY35quvvjLfffedMcaYF1980TRp0sR8/PHHZvv27eaee+4xcXFx5scff7RcuX9dbjsUFRWZJ5980mRlZZnc3Fzz+eefm3/913817dq1MyUlJbZL95tJkyYZl8tlMjMzzeHDhz3t1KlTnj4TJ040LVu2NOvWrTNbtmwxvXr1Mr169bJYtf9daTvk5OSY//zP/zRbtmwxubm55uOPPzZt2rQxiYmJliv3VisCyBhjXn31VdOyZUvToEED06NHD5OdnW27pOvu/vvvN9HR0aZBgwamefPm5v777zc5OTm2y6p269evN5IqtNTUVGPMuVuxn3nmGRMZGWmcTqcZOHCg2b17t92iq8HltsOpU6fMoEGDTHh4uKlfv75p1aqVGT9+fJ37I62y9y/JLFy40NPnxx9/NL/4xS9M06ZNTaNGjcyIESPM4cOH7RVdDa60Hfbv328SExNNaGiocTqdpm3btmb69OnG7XbbLfwifB4QAMCKGn8NCABQNxFAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBX/D3AG6kpmb21JAAAAAElFTkSuQmCC\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqx0lEQVR4nO3de3RU5b3/8c8kkCFAMhBCrkII4SKVi6soES+AJRJSb9yKVCuXWjxo8IgIajxFQNFUdFmqB2+rLUgFVLB4oacqhtupBjygiGLNIWkQhCTczCQkBjB5fn/wY45DEsIMM3mS8H6t9azF7L2fvb+zs5nP7D3P7HEYY4wAAGhkIbYLAABcmAggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggBMW8efPkcDh0+PDhgK1z8uTJ6tatW8DW1xIsXbpUDodDe/bs8UwbNmyYhg0bZq2mM9VVY7Bt3LhRDodDq1evDtg6bTyPlo4AagQOh+Oc2saNG63WOWzYMPXt29dqDcFy+gWpvvb444/7td5u3bp5rScmJkbXXHON1qxZE+BnEFyVlZWaN2+e1WMwGG9amoqamhotXbpUN910k7p06aJ27dqpb9++WrBggaqqqmyXZ00r2wVcCP7yl794PV62bJnWrVtXa3qfPn0as6wLSp8+fWrtb+nU3+aDDz7QiBEj/F73pZdeqvvvv1+SdODAAb300ksaM2aMXnjhBU2bNs3v9frrgw8+8LlPZWWl5s+fL0lN6uyppaisrNSUKVN0xRVXaNq0aYqJiVFubq7mzp2rnJwcrV+/Xg6Hw3aZjY4AagS/+tWvvB5v2bJF69atqzX9TJWVlWrbtm0wS7tgxMbG1rm/58+fr549e+ryyy/3e92JiYle6544caJ69Oih3//+9/UG0A8//KCamhqFhYX5vd36BGOdOD9hYWH66KOPdOWVV3qmTZ06Vd26dfOEUFpamsUK7eASXBNx+vLX9u3bNWTIELVt21YPP/ywpFOX8ObNm1erT7du3TR58mSvaaWlpZoxY4a6dOkip9OpHj166Mknn1RNTU1A6ty5c6cmT56s7t27q02bNoqLi9Ovf/1rHTlypM7lDx8+rPHjxysyMlKdOnXSvffeW+clh1dffVUDBw5UeHi4oqKiNGHCBO3bt6/BeoqKivT111/r5MmTPj+XTz75RPn5+brtttt87ns2cXFx6tOnjwoLCyVJe/bskcPh0NNPP61FixYpJSVFTqdTX331lSTp66+/1rhx4xQVFaU2bdrosssu0zvvvFNrvbt27dLPfvYzhYeH66KLLtKCBQvq/LvW9RlQVVWV5s2bp169eqlNmzaKj4/XmDFjVFBQoD179qhz586STgXy6cuJPz7mAl2jv44ePapZs2apX79+at++vSIjI5WRkaHPP/+8zuWrq6v18MMPKy4uTu3atdNNN91U53G1detWjRw5Ui6XS23bttXQoUP10UcfNViP2+3W119/LbfbfdblwsLCvMLntNGjR0uS/vnPfza4rZaIM6Am5MiRI8rIyNCECRP0q1/9SrGxsT71r6ys1NChQ7V//37927/9m7p27aqPP/5YWVlZKioq0qJFi867xnXr1ulf//qXpkyZori4OO3atUsvv/yydu3apS1bttS6jDB+/Hh169ZN2dnZ2rJli5599ll99913WrZsmWeZxx9/XHPmzNH48eP1m9/8RocOHdJzzz2nIUOG6LPPPlOHDh3qrScrK0uvvPKKCgsLfR6gsHz5ckkKeACdPHlS+/btU6dOnbymL1myRFVVVbrzzjvldDoVFRWlXbt26aqrrlJiYqIeeughtWvXTm+88YZGjRqlN9980/MCVVxcrGuvvVY//PCDZ7mXX35Z4eHhDdZTXV2tG264QTk5OZowYYLuvfdelZeXa926dfryyy+VlpamF154QXfddZdGjx6tMWPGSJL69+8vSY1S47n617/+pbfeeku/+MUvlJycrJKSEr300ksaOnSovvrqKyUkJHgt//jjj8vhcOjBBx/UwYMHtWjRIqWlpWnHjh2eutavX6+MjAwNHDhQc+fOVUhIiJYsWaKf/exn+u///m8NGjSo3nrWrFmjKVOmaMmSJbXeDJ6L4uJiSVJ0dLTPfVsEg0aXmZlpztz1Q4cONZLMiy++WGt5SWbu3Lm1piclJZlJkyZ5Hj/22GOmXbt25n//93+9lnvooYdMaGio2bt371nrGjp0qLnkkkvOukxlZWWtaStXrjSSzObNmz3T5s6daySZm266yWvZu+++20gyn3/+uTHGmD179pjQ0FDz+OOPey33xRdfmFatWnlNnzRpkklKSvJabtKkSUaSKSwsPGvdZ/rhhx9MbGysGTRokE/9zpSUlGRGjBhhDh06ZA4dOmQ+//xzM2HCBCPJ3HPPPcYYYwoLC40kExkZaQ4ePOjVf/jw4aZfv36mqqrKM62mpsZceeWVpmfPnp5pM2bMMJLM1q1bPdMOHjxoXC5Xrec/dOhQM3ToUM/jP//5z0aSeeaZZ2rVX1NTY4wx5tChQ/UeZ8GosS6nj5lDhw7Vu0xVVZWprq72mlZYWGicTqd59NFHPdM2bNhgJJnExERTVlbmmf7GG28YSeYPf/iD53n07NnTpKene/aFMaeO8+TkZHPdddd5pi1ZsqTW8zg9bcmSJWd9bvVJS0szkZGR5rvvvvOrf3PHJbgmxOl0asqUKX73X7Vqla655hp17NhRhw8f9rS0tDRVV1dr8+bN513jj9/NVlVV6fDhw7riiiskSZ9++mmt5TMzM70e33PPPZKk//qv/5Ik/fWvf1VNTY3Gjx/vVXNcXJx69uypDRs2nLWepUuXyhjj89lPTk6OSkpKAnL288EHH6hz587q3LmzBgwYoFWrVun222/Xk08+6bXc2LFjPZe6pFOXk9avX6/x48ervLzc89yPHDmi9PR07d69W/v375d0an9dccUVXu/GO3fufE71v/nmm4qOjvbs+x9r6IPvxqrxXDmdToWEnHrZqq6u1pEjR9S+fXv17t27zuNv4sSJioiI8DweN26c4uPjPcffjh07tHv3bt166606cuSI5/lVVFRo+PDh2rx581kvIU6ePFnGGL/Ofp544gl9+OGH+t3vfnfWs/yWjEtwTUhiYuJ5fYC8e/du7dy50+tF7scOHjzo97pPO3r0qObPn6/XXnut1vrqug7es2dPr8cpKSkKCQnxfJdi9+7dMsbUWu601q1bn3fNdVm+fLlCQ0N1yy23nPe6UlNTtWDBAjkcDrVt21Z9+vSp8wUlOTnZ63F+fr6MMZozZ47mzJlT57oPHjyoxMREffPNN0pNTa01v3fv3g3WV1BQoN69e6tVK9//uzdWjeeqpqZGf/jDH/T888+rsLBQ1dXVnnlnXvKUah9/DodDPXr08Dr+JGnSpEn1btPtdqtjx44BqP7/vP766/rtb3+rO+64Q3fddVdA192cEEBNiK/Xyn/8n0869Z/zuuuu0wMPPFDn8r169fK7ttPGjx+vjz/+WLNnz9all16q9u3bq6amRiNHjjynD5vPfMddU1Mjh8Ohv//97woNDa21fPv27c+75jN9//33WrNmjdLS0nz+nK0u0dHR5zSC6cy/7+n9NWvWLKWnp9fZp0ePHudd3/loajU+8cQTmjNnjn7961/rscceU1RUlEJCQjRjxgy/Bjuc7vPUU0/p0ksvrXOZQB+D69at08SJE3X99dfrxRdfDOi6mxsCqBno2LGjSktLvaadOHFCRUVFXtNSUlJ07NixoA3n/O6775STk6P58+frkUce8Uw//S6yLrt37/Z655+fn6+amhrPJbOUlBQZY5ScnByQgDwX77zzjsrLywM++MBX3bt3l3TqLK+hv1lSUlKd+zkvL6/B7aSkpGjr1q06efJkvWeU9V2Ka6waz9Xq1at17bXX6k9/+pPX9NLS0jo/yD+zHmOM8vPzPQMsUlJSJEmRkZGNMgx669atGj16tC677DK98cYbfp2VtiR8BtQMpKSk1Pr85uWXX651BjR+/Hjl5ubq/fffr7WO0tJS/fDDD+dVx+kzFGOM1/Szja5bvHix1+PnnntOkpSRkSFJGjNmjEJDQzV//vxa6zXG1Du8+zR/hmGvWLFCbdu29YzesiUmJkbDhg3TSy+9VOvNhCQdOnTI8++f//zn2rJliz755BOv+adH8p3N2LFjdfjwYf3nf/5nrXmn9/np75ud+UansWo8V6GhobWOk1WrVnk+hzrTsmXLVF5e7nm8evVqFRUVeY6/gQMHKiUlRU8//bSOHTtWq/+Pn19dznUYtnRqqPX111+vbt26ae3atQEdHdhcXdjx20z85je/0bRp0zR27Fhdd911+vzzz/X+++/Xesc3e/ZsvfPOO7rhhhs0efJkDRw4UBUVFfriiy+0evVq7dmzp8HhnocOHdKCBQtqTU9OTtZtt92mIUOGaOHChTp58qQSExP1wQcfeL7vUpfCwkLddNNNGjlypHJzc/Xqq6/q1ltv1YABAySdCtcFCxYoKytLe/bs0ahRoxQREaHCwkKtWbNGd955p2bNmlXv+n0dhn306FH9/e9/19ixY+u9tLJnzx4lJydr0qRJWrp0aYPrPB+LFy/W1VdfrX79+mnq1Knq3r27SkpKlJubq2+//dbz/ZYHHnhAf/nLXzRy5Ejde++9niHOSUlJ2rlz51m3MXHiRC1btkwzZ87UJ598omuuuUYVFRX68MMPdffdd+vmm29WeHi4fvKTn+j1119Xr169FBUVpb59+6pv376NUuOPPfPMM7W+gB0SEqKHH35YN9xwgx599FFNmTJFV155pb744gstX77cc6Z2pqioKF199dWaMmWKSkpKtGjRIvXo0UNTp071rPePf/yjMjIydMkll2jKlClKTEzU/v37tWHDBkVGRurdd9+tt9ZzHYZdXl6u9PR0fffdd5o9e7b+9re/ec1PSUnR4MGDz3EPtSB2Bt9d2Oobhl3fEOjq6mrz4IMPmujoaNO2bVuTnp5u8vPzaw3DNsaY8vJyk5WVZXr06GHCwsJMdHS0ufLKK83TTz9tTpw4cda6Tg8Fr6sNHz7cGGPMt99+a0aPHm06dOhgXC6X+cUvfmEOHDhQawjv6SG1X331lRk3bpyJiIgwHTt2NNOnTzfff/99rW2/+eab5uqrrzbt2rUz7dq1MxdffLHJzMw0eXl5nmUCMQz7xRdfNJLMO++8U+8yX3zxhZFkHnrooQbXl5SUZK6//vqzLnN6GPZTTz1V5/yCggIzceJEExcXZ1q3bm0SExPNDTfcYFavXu213M6dO83QoUNNmzZtTGJionnsscfMn/70pwaHYRtzaljxf/zHf5jk5GTTunVrExcXZ8aNG2cKCgo8y3z88cdm4MCBJiwsrNbfM9A11uX0MVNXCw0NNcacGoZ9//33m/j4eBMeHm6uuuoqk5ubW+s5nx6GvXLlSpOVlWViYmJMeHi4uf76680333xTa9ufffaZGTNmjOnUqZNxOp0mKSnJjB8/3uTk5HiWOZ9h2KePgframf+PLxQOY844nwUucM8//7weeOABFRQUBGSQAoC68RkQcIYNGzbo3//93wkfIMg4AwIAWMEZEADACgIIAGAFAQQAsIIAAgBY0eS+iFpTU6MDBw4oIiLigvyJWgBo7owxKi8vV0JCgufu5XVpcgF04MABdenSxXYZAIDztG/fPl100UX1zm9yl+B+/NsdAIDmq6HX86AF0OLFi9WtWze1adNGqampXjcoPBsuuwFAy9DQ63lQAuj111/XzJkzNXfuXH366acaMGCA0tPTA/KDaACAFiIYN5gbNGiQyczM9Dyurq42CQkJJjs7u8G+brf7rDfto9FoNFrzaG63+6yv9wE/Azpx4oS2b9/u9eNOISEhSktLU25ubq3ljx8/rrKyMq8GAGj5Ah5Ahw8fVnV1da0bOcbGxqq4uLjW8tnZ2XK5XJ7GCDgAuDBYHwWXlZUlt9vtafv27bNdEgCgEQT8e0DR0dEKDQ1VSUmJ1/SSkhLFxcXVWt7pdMrpdAa6DABAExfwM6CwsDANHDhQOTk5nmk1NTXKycm5MH9yFgBQp6DcCWHmzJmaNGmSLrvsMg0aNEiLFi1SRUWFpkyZEozNAQCaoaAE0C233KJDhw7pkUceUXFxsS699FK99957/MIkAMCjyf0iallZmVwul+0yAADnye12KzIyst751kfBAQAuTAQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWBDyA5s2bJ4fD4dUuvvjiQG8GANDMtQrGSi+55BJ9+OGH/7eRVkHZDACgGQtKMrRq1UpxcXHBWDUAoIUIymdAu3fvVkJCgrp3767bbrtNe/furXfZ48ePq6yszKsBAFq+gAdQamqqli5dqvfee08vvPCCCgsLdc0116i8vLzO5bOzs+VyuTytS5cugS4JANAEOYwxJpgbKC0tVVJSkp555hndcccdteYfP35cx48f9zwuKysjhACgBXC73YqMjKx3ftBHB3To0EG9evVSfn5+nfOdTqecTmewywAANDFB/x7QsWPHVFBQoPj4+GBvCgDQjAQ8gGbNmqVNmzZpz549+vjjjzV69GiFhobql7/8ZaA3BQBoxgJ+Ce7bb7/VL3/5Sx05ckSdO3fW1VdfrS1btqhz586B3hQAoBkL+iAEX5WVlcnlctkuA2gR/P0SeHh4eIArqVtlZaXPfaqrq4NQCYKhoUEI3AsOAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwI+g/SoeUKCfH9/UvHjh2DUElto0aN8qvf7t27fe5z9OhRn/vU9evAwdC1a1e/+o0ePTrAldTt4Ycf9rnPU0895XMfbmDaNHEGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACscxhhju4gfKysrk8vlsl0GzsHtt9/uc59XXnklCJXgQtKrVy+f++Tn5wehEjTE7XYrMjKy3vmcAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFa1sF4DmKyUlxXYJTcKJEyd87lNUVBSESmoLDw/3q19MTEyAKwFq4wwIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKzgZqTwW3Z2ts99CgoKglCJXUePHvW5z9/+9jef+7Rt29bnPs8995zPfSRpypQpfvXzlT/74eDBg0GoBDZwBgQAsIIAAgBY4XMAbd68WTfeeKMSEhLkcDj01ltvec03xuiRRx5RfHy8wsPDlZaWpt27dweqXgBAC+FzAFVUVGjAgAFavHhxnfMXLlyoZ599Vi+++KK2bt2qdu3aKT09XVVVVeddLACg5fB5EEJGRoYyMjLqnGeM0aJFi/Tb3/5WN998syRp2bJlio2N1VtvvaUJEyacX7UAgBYjoJ8BFRYWqri4WGlpaZ5pLpdLqampys3NrbPP8ePHVVZW5tUAAC1fQAOouLhYkhQbG+s1PTY21jPvTNnZ2XK5XJ7WpUuXQJYEAGiirI+Cy8rKktvt9rR9+/bZLgkA0AgCGkBxcXGSpJKSEq/pJSUlnnlncjqdioyM9GoAgJYvoAGUnJysuLg45eTkeKaVlZVp69atGjx4cCA3BQBo5nweBXfs2DHl5+d7HhcWFmrHjh2KiopS165dNWPGDC1YsEA9e/ZUcnKy5syZo4SEBI0aNSqQdQMAmjmfA2jbtm269tprPY9nzpwpSZo0aZKWLl2qBx54QBUVFbrzzjtVWlqqq6++Wu+9957atGkTuKoBAM2ewxhjbBfxY2VlZXK5XLbLAJqccePG+dznjTfeCEIldfuf//kfn/uMGDHC5z5ut9vnPrDD7Xaf9XN966PgAAAXJgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKzw+ecYAJy/YcOG+dxn8eLFgS+kHnl5eT73eeKJJ3zuw52tL2ycAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFdyMFDhPPXr08LnP66+/7nOfzp07+9zH35t9jhs3zuc+u3bt8mtbuHBxBgQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVnAzUuBH2rVr53OfOXPm+NzHnxuL+mP16tV+9ePGomgMnAEBAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBXcjBT4keHDh/vc5/bbbw9CJbV9/vnnPveZNWtWECqxKyEhwec+HTp08Gtb/tw0NiwszK9tNZZ169bZLsGDMyAAgBUEEADACp8DaPPmzbrxxhuVkJAgh8Oht956y2v+5MmT5XA4vNrIkSMDVS8AoIXwOYAqKio0YMAALV68uN5lRo4cqaKiIk9buXLleRUJAGh5fB6EkJGRoYyMjLMu43Q6FRcX53dRAICWLyifAW3cuFExMTHq3bu37rrrLh05cqTeZY8fP66ysjKvBgBo+QIeQCNHjtSyZcuUk5OjJ598Ups2bVJGRoaqq6vrXD47O1sul8vTunTpEuiSAABNUMC/BzRhwgTPv/v166f+/fsrJSVFGzdurPM7FllZWZo5c6bncVlZGSEEABeAoA/D7t69u6Kjo5Wfn1/nfKfTqcjISK8GAGj5gh5A3377rY4cOaL4+PhgbwoA0Iz4fAnu2LFjXmczhYWF2rFjh6KiohQVFaX58+dr7NixiouLU0FBgR544AH16NFD6enpAS0cANC8+RxA27Zt07XXXut5fPrzm0mTJumFF17Qzp079corr6i0tFQJCQkaMWKEHnvsMTmdzsBVDQBo9nwOoGHDhskYU+/8999//7wKQuNr1cq/sShN+ay2U6dOfvV75plnAlxJ4Kxdu9bnPn369PFrW7Nnz/a5jz83CfWHPzcIjYiI8Gtb/tzEtHXr1n5ty1f1fa7ekF69egW4Ev9xLzgAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY4TBnu7W1BWVlZXK5XLbLaLb69u3rc59XX33Vr23179/fr37wT0VFRaNtq127do22LV/t27fP5z7btm0LQiWBs3DhQp/77N27169tFRUV+dXPH263+6y/cs0ZEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY0cp2AQisDRs2+NynU6dOQagEZ7N582af+zTmTST9kZeX53OfVatW+dyntLTU5z779+/3uQ+CjzMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCm5G2MP7csPKbb77xa1vbtm3zuc+yZct87vOPf/zD5z7+8udGlxMnTvS5jz83ja2oqPC5D9CUcQYEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFZwM9IWZsiQIT73qamp8WtbZWVlPveJj4/3a1uNZf/+/T73Wbt2bRAqAVo+zoAAAFYQQAAAK3wKoOzsbF1++eWKiIhQTEyMRo0apby8PK9lqqqqlJmZqU6dOql9+/YaO3asSkpKAlo0AKD58ymANm3apMzMTG3ZskXr1q3TyZMnNWLECK8fyrrvvvv07rvvatWqVdq0aZMOHDigMWPGBLxwAEDz5jDGGH87Hzp0SDExMdq0aZOGDBkit9utzp07a8WKFRo3bpwk6euvv1afPn2Um5urK664osF1lpWVyeVy+VvSBa9Dhw4+92nqgxD8GRjgr127dvncp1+/fkGoBGj+3G63IiMj651/Xp8Bud1uSVJUVJQkafv27Tp58qTS0tI8y1x88cXq2rWrcnNz61zH8ePHVVZW5tUAAC2f3wFUU1OjGTNm6KqrrlLfvn0lScXFxQoLC6v1Ljw2NlbFxcV1ric7O1sul8vTunTp4m9JAIBmxO8AyszM1JdffqnXXnvtvArIysqS2+32tH379p3X+gAAzYNfX0SdPn261q5dq82bN+uiiy7yTI+Li9OJEydUWlrqdRZUUlKiuLi4OtfldDrldDr9KQMA0Iz5dAZkjNH06dO1Zs0arV+/XsnJyV7zBw4cqNatWysnJ8czLS8vT3v37tXgwYMDUzEAoEXw6QwoMzNTK1as0Ntvv62IiAjP5zoul0vh4eFyuVy64447NHPmTEVFRSkyMlL33HOPBg8efE4j4AAAFw6fAuiFF16QJA0bNsxr+pIlSzR58mRJ0u9//3uFhIRo7NixOn78uNLT0/X8888HpFgAQMtxXt8DCga+B9Sy+fO3/fjjj33u85Of/MTnPpL05Zdf+tyH7wEBdQvq94AAAPAXAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVvj1i6iAv9xut899RowY4XOfdevW+dwHQOPiDAgAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArOBmpGjy9u/f73Ofn/70p35tKySE92RAY+F/GwDACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwc1I0SJVVVXZLgFAAzgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGCFTwGUnZ2tyy+/XBEREYqJidGoUaOUl5fntcywYcPkcDi82rRp0wJaNACg+fMpgDZt2qTMzExt2bJF69at08mTJzVixAhVVFR4LTd16lQVFRV52sKFCwNaNACg+fPpF1Hfe+89r8dLly5VTEyMtm/friFDhnimt23bVnFxcYGpEADQIp3XZ0But1uSFBUV5TV9+fLlio6OVt++fZWVlaXKysp613H8+HGVlZV5NQDABcD4qbq62lx//fXmqquu8pr+0ksvmffee8/s3LnTvPrqqyYxMdGMHj263vXMnTvXSKLRaDRaC2tut/usOeJ3AE2bNs0kJSWZffv2nXW5nJwcI8nk5+fXOb+qqsq43W5P27dvn/WdRqPRaLTzbw0FkE+fAZ02ffp0rV27Vps3b9ZFF1101mVTU1MlSfn5+UpJSak13+l0yul0+lMGAKAZ8ymAjDG65557tGbNGm3cuFHJyckN9tmxY4ckKT4+3q8CAQAtk08BlJmZqRUrVujtt99WRESEiouLJUkul0vh4eEqKCjQihUr9POf/1ydOnXSzp07dd9992nIkCHq379/UJ4AAKCZ8uVzH9VznW/JkiXGGGP27t1rhgwZYqKioozT6TQ9evQws2fPbvA64I+53W7r1y1pNBqNdv6todd+x/8PliajrKxMLpfLdhkAgPPkdrsVGRlZ73zuBQcAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsKLJBZAxxnYJAIAAaOj1vMkFUHl5ue0SAAAB0NDrucM0sVOOmpoaHThwQBEREXI4HF7zysrK1KVLF+3bt0+RkZGWKrSP/XAK++EU9sMp7IdTmsJ+MMaovLxcCQkJCgmp/zynVSPWdE5CQkJ00UUXnXWZyMjIC/oAO439cAr74RT2wynsh1Ns7weXy9XgMk3uEhwA4MJAAAEArGhWAeR0OjV37lw5nU7bpVjFfjiF/XAK++EU9sMpzWk/NLlBCACAC0OzOgMCALQcBBAAwAoCCABgBQEEALCCAAIAWNFsAmjx4sXq1q2b2rRpo9TUVH3yySe2S2p08+bNk8Ph8GoXX3yx7bKCbvPmzbrxxhuVkJAgh8Oht956y2u+MUaPPPKI4uPjFR4errS0NO3evdtOsUHU0H6YPHlyreNj5MiRdooNkuzsbF1++eWKiIhQTEyMRo0apby8PK9lqqqqlJmZqU6dOql9+/YaO3asSkpKLFUcHOeyH4YNG1breJg2bZqliuvWLALo9ddf18yZMzV37lx9+umnGjBggNLT03Xw4EHbpTW6Sy65REVFRZ72j3/8w3ZJQVdRUaEBAwZo8eLFdc5fuHChnn32Wb344ovaunWr2rVrp/T0dFVVVTVypcHV0H6QpJEjR3odHytXrmzECoNv06ZNyszM1JYtW7Ru3TqdPHlSI0aMUEVFhWeZ++67T++++65WrVqlTZs26cCBAxozZozFqgPvXPaDJE2dOtXreFi4cKGliuthmoFBgwaZzMxMz+Pq6mqTkJBgsrOzLVbV+ObOnWsGDBhguwyrJJk1a9Z4HtfU1Ji4uDjz1FNPeaaVlpYap9NpVq5caaHCxnHmfjDGmEmTJpmbb77ZSj22HDx40EgymzZtMsac+tu3bt3arFq1yrPMP//5TyPJ5Obm2ioz6M7cD8YYM3ToUHPvvffaK+ocNPkzoBMnTmj79u1KS0vzTAsJCVFaWppyc3MtVmbH7t27lZCQoO7du+u2227T3r17bZdkVWFhoYqLi72OD5fLpdTU1Avy+Ni4caNiYmLUu3dv3XXXXTpy5IjtkoLK7XZLkqKioiRJ27dv18mTJ72Oh4svvlhdu3Zt0cfDmfvhtOXLlys6Olp9+/ZVVlaWKisrbZRXryZ3N+wzHT58WNXV1YqNjfWaHhsbq6+//tpSVXakpqZq6dKl6t27t4qKijR//nxdc801+vLLLxUREWG7PCuKi4slqc7j4/S8C8XIkSM1ZswYJScnq6CgQA8//LAyMjKUm5ur0NBQ2+UFXE1NjWbMmKGrrrpKffv2lXTqeAgLC1OHDh28lm3Jx0Nd+0GSbr31ViUlJSkhIUE7d+7Ugw8+qLy8PP31r3+1WK23Jh9A+D8ZGRmef/fv31+pqalKSkrSG2+8oTvuuMNiZWgKJkyY4Pl3v3791L9/f6WkpGjjxo0aPny4xcqCIzMzU19++eUF8Tno2dS3H+68807Pv/v166f4+HgNHz5cBQUFSklJaewy69TkL8FFR0crNDS01iiWkpISxcXFWaqqaejQoYN69eql/Px826VYc/oY4PiorXv37oqOjm6Rx8f06dO1du1abdiwwev3w+Li4nTixAmVlpZ6Ld9Sj4f69kNdUlNTJalJHQ9NPoDCwsI0cOBA5eTkeKbV1NQoJydHgwcPtliZfceOHVNBQYHi4+Ntl2JNcnKy4uLivI6PsrIybd269YI/Pr799lsdOXKkRR0fxhhNnz5da9as0fr165WcnOw1f+DAgWrdurXX8ZCXl6e9e/e2qOOhof1Qlx07dkhS0zoebI+COBevvfaacTqdZunSpearr74yd955p+nQoYMpLi62XVqjuv/++83GjRtNYWGh+eijj0xaWpqJjo42Bw8etF1aUJWXl5vPPvvMfPbZZ0aSeeaZZ8xnn31mvvnmG2OMMb/73e9Mhw4dzNtvv2127txpbr75ZpOcnGy+//57y5UH1tn2Q3l5uZk1a5bJzc01hYWF5sMPPzQ//elPTc+ePU1VVZXt0gPmrrvuMi6Xy2zcuNEUFRV5WmVlpWeZadOmma5du5r169ebbdu2mcGDB5vBgwdbrDrwGtoP+fn55tFHHzXbtm0zhYWF5u233zbdu3c3Q4YMsVy5t2YRQMYY89xzz5muXbuasLAwM2jQILNlyxbbJTW6W265xcTHx5uwsDCTmJhobrnlFpOfn2+7rKDbsGGDkVSrTZo0yRhzaij2nDlzTGxsrHE6nWb48OEmLy/PbtFBcLb9UFlZaUaMGGE6d+5sWrdubZKSkszUqVNb3Ju0up6/JLNkyRLPMt9//725++67TceOHU3btm3N6NGjTVFRkb2ig6Ch/bB3714zZMgQExUVZZxOp+nRo4eZPXu2cbvddgs/A78HBACwosl/BgQAaJkIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMCK/wfzmIwPxNcnQQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqVklEQVR4nO3de1TVdb7/8dfWdIsKWxFhAykieGnSbB0nyTJBJZXp5m3MqZnUmhwNO5mVRecY0GWYLsucOma1TqM12c1KnVpnnIwAZya0lWl2OXmEwcQEVCY2iIEEn98f/tzjlpvgxg/g87HWZy339/v5fr/v/eUrr/297A8OY4wRAADnWBfbBQAAzk8EEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEENpEWlqaHA6Hjhw54rd1zps3T4MGDfLb+jqDtWvXyuFwaN++fd5pCQkJSkhIsFbT6Rqqsa1lZ2fL4XDo7bff9ts6bbyPzo4AOgccDscZtezsbKt1JiQkaMSIEVZraGsVFRVatmyZoqOj5XQ6FRkZqVmzZunYsWOtWt+gQYN8foahoaG66qqrtGHDBj9X3raOHTumtLQ0q8dgW3xoaW/q6uq0evVqXXrppQoICFC/fv00ceJEff7557ZLs+IC2wWcD/74xz/6vH7llVe0ZcuWetMvuuiic1nWecfj8Sg+Pl4HDhzQggULFBsbq8OHD+uvf/2rqqur1bNnz1at99JLL9U999wjSTp48KBeeOEFzZgxQ6tXr9bChQv9+RbOyAcffNDiZY4dO6b09HRJaldnT53NrbfeqnXr1umWW27R4sWLVVlZqZ07d+rQoUO2S7OCADoHfvnLX/q83rZtm7Zs2VJv+umOHTvW6l+KqC8lJUXffvutPvvsM0VHR3un33///We13sjISJ+f5S233KLY2Fg9/fTTjQbQjz/+qLq6OnXv3v2stt2Qtlgnzt5bb72ll19+We+++66mT59uu5x2gUtw7cTJy187duzQ+PHj1bNnTz344IOSTlzCS0tLq7fMoEGDNG/ePJ9pZWVlWrJkiQYMGCCn06nY2Fg9/vjjqqur80udu3fv1rx58zR48GD16NFDbrdbt956q0pLSxvsf+TIEc2ePVtBQUHq16+f7rrrLlVVVdXr9+qrr2r06NEKCAhQcHCw5syZo8LCwmbrKSoq0jfffKOampom+5WVlWnNmjVasGCBoqOjdfz4cVVXV5/Zm24ht9utiy66SAUFBZKkffv2yeFw6KmnntLKlSsVExMjp9Opr7/+WpL0zTffaNasWQoODlaPHj3005/+VH/605/qrferr77SxIkTFRAQoAsvvFCPPvpogz/Xhu4BVVVVKS0tTUOHDlWPHj0UHh6uGTNmKD8/X/v27VP//v0lSenp6d7Liacec/6usbX++c9/6t5779XIkSPVu3dvBQUFKSkpqdFLWLW1tXrwwQfldrvVq1cvXX/99Q0eV9u3b9fUqVPlcrnUs2dPxcfH6+9//3uz9Xg8Hn3zzTfyeDzN9l2xYoXGjBmj6dOnq66uTpWVlc2/4U6OM6B2pLS0VElJSZozZ45++ctfKiwsrEXLHzt2TPHx8fruu+/0m9/8RgMHDtTHH3+slJQUFRUVaeXKlWdd45YtW/SPf/xD8+fPl9vt1ldffaUXX3xRX331lbZt2yaHw+HTf/bs2Ro0aJAyMjK0bds2PfPMM/r+++/1yiuvePs89thjWr58uWbPnq1f//rXOnz4sJ599lmNHz9eO3fuVJ8+fRqtJyUlRS+//LIKCgqafEDhb3/7m6qqqhQbG6tZs2Zp48aNqqur09ixY7Vq1SpdeumlZ7ln/qWmpkaFhYXq16+fz/Q1a9aoqqpKCxYskNPpVHBwsL766itdeeWVioyM1AMPPKBevXrprbfe0rRp0/TOO+94PykXFxdrwoQJ+vHHH739XnzxRQUEBDRbT21tra699lplZmZqzpw5uuuuu1RRUaEtW7boyy+/VGJiolavXq1FixZp+vTpmjFjhiTpkksukaRzUuOZ+sc//qGNGzfq5z//uaKjo1VSUqIXXnhB8fHx+vrrrxUREeHT/7HHHpPD4dD999+vQ4cOaeXKlUpMTNSuXbu8dX300UdKSkrS6NGjlZqaqi5dumjNmjWaOHGi/vrXv2rMmDGN1rNhwwbNnz9fa9asqfdh8FTl5eX65JNPdMcdd+jBBx/Us88+q6NHjyo6Olq/+93vNHv2bL/snw7H4JxLTk42p+/6+Ph4I8k8//zz9fpLMqmpqfWmR0VFmblz53pfP/LII6ZXr17m//7v/3z6PfDAA6Zr165m//79TdYVHx9vLr744ib7HDt2rN60119/3UgyW7du9U5LTU01ksz111/v0/eOO+4wksznn39ujDFm3759pmvXruaxxx7z6ffFF1+YCy64wGf63LlzTVRUlE+/uXPnGkmmoKCgybpXrFhhJJl+/fqZMWPGmHXr1pnnnnvOhIWFmb59+5qDBw82uXxjoqKizOTJk83hw4fN4cOHzeeff27mzJljJJk777zTGGNMQUGBkWSCgoLMoUOHfJafNGmSGTlypKmqqvJOq6urM1dccYUZMmSId9qSJUuMJLN9+3bvtEOHDhmXy1Xv/cfHx5v4+Hjv6z/84Q9GklmxYkW9+uvq6owxxhw+fLjR46wtamzIyWPm8OHDjfapqqoytbW1PtMKCgqM0+k0Dz/8sHdaVlaWkWQiIyNNeXm5d/pbb71lJJnf//733vcxZMgQM2XKFO++MObEcR4dHW2uvvpq77Q1a9bUex8np61Zs6bJ9/bZZ595j7+wsDDz3HPPmXXr1pkxY8YYh8Nh/vznPze5fGfFJbh2xOl0av78+a1efv369brqqqvUt29fHTlyxNsSExNVW1urrVu3nnWNp36araqq0pEjR3T55ZdLkj777LN6/ZOTk31e33nnnZKk//mf/5Ekvfvuu6qrq9Ps2bN9ana73RoyZIiysrKarGft2rUyxjT7ePbRo0clnbicmZmZqZtuukmLFi3Sxo0b9f3332vVqlVNv/EmfPDBB+rfv7/69++vUaNGaf369frVr36lxx9/3KffzJkzvZe6pBOXkz766CPNnj1bFRUV3vdeWlqqKVOmaO/evfruu+8kndhfl19+uc+n8f79++vmm29utr533nlHISEh3n1/qtPPWE93rmo8U06nU126nPi1VVtbq9LSUvXu3VvDhg1r8Pi75ZZbFBgY6H09a9YshYeHe4+/Xbt2ae/evbrppptUWlrqfX+VlZWaNGmStm7d2uQlxHnz5skY0+TZj/Sv46+0tFSbNm3SokWLdNNNNykzM1P9+vXTo48+2tJd0SlwCa4diYyMPKsbyHv37tXu3bt9fsmdyh9P2vzzn/9Uenq63njjjXrra+g6+JAhQ3xex8TEqEuXLt7vUuzdu1fGmHr9TurWrdtZ1yz9Kzivu+469e7d2zv98ssvV3R0tD7++ONWrzsuLk6PPvqoHA6HevbsqYsuuqjBy4anPvggSXl5eTLGaPny5Vq+fHmD6z506JAiIyP17bffKi4urt78YcOGNVtffn6+hg0bpgsuaPl/93NV45mqq6vT73//ez333HMqKChQbW2td97plzyl+sefw+FQbGysz/EnSXPnzm10mx6PR3379j2ruk8ef9HR0T77qHfv3rruuuv06quv6scff2zVz6gjO7/ebTvX0mvlp/7nk07857z66qu1bNmyBvsPHTq01bWdNHv2bH388ce67777dOmll6p3796qq6vT1KlTz+hm8+mfuOvq6uRwOPTnP/9ZXbt2rdf/1LA4GyfvDTR0Xy00NFTff/99q9cdEhKixMTEZvud/vM9ub/uvfdeTZkypcFlYmNjW12XP7S3Gn/7299q+fLluvXWW/XII48oODhYXbp00ZIlS1r1sMPJZZ588slG7wP64xhs7virqalRZWWlXC7XWW+rIyGAOoC+ffuqrKzMZ9rx48dVVFTkMy0mJkZHjx49o1+GrfH9998rMzNT6enpeuihh7zTT36KbMjevXt9Pvnn5eWprq7Oe8ksJiZGxhhFR0f7JSAbM3r0aEnyXi461cGDBzV8+PA223ZjBg8eLOnEWV5zP7OoqKgG9/OePXua3U5MTIy2b9+umpqaRs8oG7sUd65qPFNvv/22JkyYoJdeeslnellZmUJCQur1P70eY4zy8vK8D1jExMRIkoKCgtrs/410IoDcbnejx1+PHj18LhWeL7gH1AHExMTUu3/z4osv1jsDmj17tnJzc/WXv/yl3jrKysr0448/nlUdJ89QjDE+05t6uu70eyvPPvusJCkpKUmSNGPGDHXt2lXp6en11muMafTx7pPO9DHsYcOGadSoUdq0aZPPN+0/+OADFRYW6uqrr25y+bYQGhqqhIQEvfDCC/U+TEjS4cOHvf/+2c9+pm3btumTTz7xmb9u3bpmtzNz5kwdOXJE//Vf/1Vv3sl9fvL7Zqd/0DlXNZ6prl271jtO1q9f3+AvdunEl74rKiq8r99++20VFRV5j7/Ro0crJiZGTz31lPc+zalOfX8Naclj2DfeeKMKCwu1ZcsW77QjR45o06ZNmjhxovfe1vmEM6AO4Ne//rUWLlyomTNn6uqrr9bnn3+uv/zlL/U+8d13333605/+pGuvvVbz5s3T6NGjVVlZqS+++EJvv/229u3b1+CnxFMdPny4wRui0dHRuvnmmzV+/Hg98cQTqqmpUWRkpD744APv910aUlBQoOuvv15Tp05Vbm6uXn31Vd10000aNWqUpBPh+uijjyolJUX79u3TtGnTFBgYqIKCAm3YsEELFizQvffe2+j6z/QxbEl6+umndfXVV2vcuHH6zW9+I4/HoxUrVmjo0KFatGiRt9++ffsUHR2tuXPnau3atU2u82ytWrVK48aN08iRI3X77bdr8ODBKikpUW5urg4cOOD9fsuyZcv0xz/+UVOnTtVdd93lfcQ5KipKu3fvbnIbt9xyi1555RUtXbpUn3zyia666ipVVlbqww8/1B133KEbbrhBAQEB+slPfqI333xTQ4cOVXBwsEaMGKERI0ackxpPtWLFinpfwO7SpYsefPBBXXvttXr44Yc1f/58XXHFFfriiy+0bt0675na6YKDgzVu3DjNnz9fJSUlWrlypWJjY3X77bd71/vf//3fSkpK0sUXX6z58+crMjJS3333nbKyshQUFKT33nuv0VrP9DFs6cSx+tZbb2nmzJlaunSpXC6Xnn/+edXU1Oi3v/3tGe+fTsXOw3fnt8Yew27sEeja2lpz//33m5CQENOzZ08zZcoUk5eXV+8xbGOMqaioMCkpKSY2NtZ0797dhISEmCuuuMI89dRT5vjx403WdfJR8IbapEmTjDHGHDhwwEyfPt306dPHuFwu8/Of/9wcPHiw3iO8Jx+p/frrr82sWbNMYGCg6du3r1m8eLH54Ycf6m37nXfeMePGjTO9evUyvXr1MsOHDzfJyclmz5493j5n8xj2SVu2bDGXX3656dGjhwkODja/+tWvTFFRkU+fL774wkgyDzzwQLPri4qKMtdcc02TfU4+hv3kk082OD8/P9/ccsstxu12m27dupnIyEhz7bXXmrffftun3+7du018fLzp0aOHiYyMNI888oh56aWXmn0M25gTjxX/x3/8h4mOjjbdunUzbrfbzJo1y+Tn53v7fPzxx2b06NGme/fu9X6e/q6xISePmYZa165djTEnHsO+5557THh4uAkICDBXXnmlyc3NrfeeTz6G/frrr5uUlBQTGhpqAgICzDXXXGO+/fbbetveuXOnmTFjhunXr59xOp0mKirKzJ4922RmZnr7nM1j2Kfux+nTp5ugoCATEBBgJk6caD755JMzWrYzchhz2vkscJ577rnntGzZMuXn57f4y8AAztz5d9ERaEZWVpb+/d//nfAB2hhnQAAAKzgDAgBYQQABAKwggAAAVhBAAAAr2t0XUevq6nTw4EEFBgY2O1IvAKD9McaooqJCERERTY7w0O4C6ODBgxowYIDtMgAAZ6mwsFAXXnhho/Pb3SW483FAPgDojJr7fd5mAbRq1SoNGjRIPXr0UFxcnM8AhU3hshsAdA7N/T5vkwB68803tXTpUqWmpuqzzz7TqFGjNGXKFL/8QTQAQCfRFgPMjRkzxiQnJ3tf19bWmoiICJORkdHssh6Pp9EBCWk0Go3WcZrH42ny973fz4COHz+uHTt2+Pxxpy5duigxMVG5ubn1+ldXV6u8vNynAQA6P78H0JEjR1RbW1tvIMewsDAVFxfX65+RkSGXy+VtPAEHAOcH60/BpaSkyOPxeFthYaHtkgAA54DfvwcUEhKirl27qqSkxGd6SUmJ3G53vf5Op1NOp9PfZQAA2jm/nwF1795do0ePVmZmpndaXV2dMjMzNXbsWH9vDgDQQbXJSAhLly7V3Llz9dOf/lRjxozRypUrVVlZqfnz57fF5gAAHVCbBNCNN96ow4cP66GHHlJxcbEuvfRSbd68mb8wCQDwand/EbW8vFwul8t2GQCAs+TxeBQUFNTofOtPwQEAzk8EEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsKJNRsMG0LSEhIQWL5OVldXiZdLT01u8jCSlpaW1ajmgJTgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBWMhg1YkJqaek62Ex8f36rlWjNad3Z2dqu2hfMXZ0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAWDkQJnKS0trcXLtGawz3OJgUVxLnAGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWOIwxxnYRpyovL5fL5bJdBnDG2tl/IR8TJkxo1XIMRgp/8Hg8CgoKanQ+Z0AAACsIIACAFX4PoLS0NDkcDp82fPhwf28GANDBtckfpLv44ov14Ycf/msjF/B37wAAvtokGS644AK53e62WDUAoJNok3tAe/fuVUREhAYPHqybb75Z+/fvb7RvdXW1ysvLfRoAoPPzewDFxcVp7dq12rx5s1avXq2CggJdddVVqqioaLB/RkaGXC6Xtw0YMMDfJQEA2qE2/x5QWVmZoqKitGLFCt1222315ldXV6u6utr7ury8nBBCh8L3gICGNfc9oDZ/OqBPnz4aOnSo8vLyGpzvdDrldDrbugwAQDvT5t8DOnr0qPLz8xUeHt7WmwIAdCB+D6B7771XOTk52rdvnz7++GNNnz5dXbt21S9+8Qt/bwoA0IH5/RLcgQMH9Itf/EKlpaXq37+/xo0bp23btql///7+3hQAoANjMFLgFAkJCS1eJisry/+F+InD4bBdAs5jDEYKAGiXCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGBFm/9BOgD+0Zq/UtqawVVbuy2gpTgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBWMho1OqbWjQKempvq3ED/Kyclp8TKMao32jDMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCwUjRKbV2MNLWLtdS6enpLV4mLS3N/4UAFnEGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWOIwxxnYRpyovL5fL5bJdBjq4dnZY1zNhwoQWL5Odne3/QoA25PF4FBQU1Oh8zoAAAFYQQAAAK1ocQFu3btV1112niIgIORwObdy40We+MUYPPfSQwsPDFRAQoMTERO3du9df9QIAOokWB1BlZaVGjRqlVatWNTj/iSee0DPPPKPnn39e27dvV69evTRlyhRVVVWddbEAgM6jxX8RNSkpSUlJSQ3OM8Zo5cqV+s///E/dcMMNkqRXXnlFYWFh2rhxo+bMmXN21QIAOg2/3gMqKChQcXGxEhMTvdNcLpfi4uKUm5vb4DLV1dUqLy/3aQCAzs+vAVRcXCxJCgsL85keFhbmnXe6jIwMuVwubxswYIA/SwIAtFPWn4JLSUmRx+PxtsLCQtslAQDOAb8GkNvtliSVlJT4TC8pKfHOO53T6VRQUJBPAwB0fn4NoOjoaLndbmVmZnqnlZeXa/v27Ro7dqw/NwUA6OBa/BTc0aNHlZeX531dUFCgXbt2KTg4WAMHDtSSJUv06KOPasiQIYqOjtby5csVERGhadOm+bNuAEAH1+IA+vTTT33GsVq6dKkkae7cuVq7dq2WLVumyspKLViwQGVlZRo3bpw2b96sHj16+K9qAECHx2CkaPfS0tJavExqaqr/C2lEawYJbc1gpO1da35O50p7rq0zYzBSAEC7RAABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBWMho12r50dovW0ZmTr1oyg3RoJCQmtWi4rK8u/hVjW2v2dnp5+zrbVGTEaNgCgXSKAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFRfYLgDnl9YOjonW7bvU1FT/F9IBtfa4y8nJafEyDEZ65jgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArGIwUrdaaAR6zsrL8X4gfpaenn5PtpKWltXgZBhY99xhYtG1xBgQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjAYKVqtPQ8sei4HkWzP+wFnh8FI2xZnQAAAKwggAIAVLQ6grVu36rrrrlNERIQcDoc2btzoM3/evHlyOBw+berUqf6qFwDQSbQ4gCorKzVq1CitWrWq0T5Tp05VUVGRt73++utnVSQAoPNp8UMISUlJSkpKarKP0+mU2+1udVEAgM6vTe4BZWdnKzQ0VMOGDdOiRYtUWlraaN/q6mqVl5f7NABA5+f3AJo6dapeeeUVZWZm6vHHH1dOTo6SkpJUW1vbYP+MjAy5XC5vGzBggL9LAgC0Q37/HtCcOXO8/x45cqQuueQSxcTEKDs7W5MmTarXPyUlRUuXLvW+Li8vJ4QA4DzQ5o9hDx48WCEhIcrLy2twvtPpVFBQkE8DAHR+bR5ABw4cUGlpqcLDw9t6UwCADqTFl+COHj3qczZTUFCgXbt2KTg4WMHBwUpPT9fMmTPldruVn5+vZcuWKTY2VlOmTPFr4QCAjq3FAfTpp59qwoQJ3tcn79/MnTtXq1ev1u7du/Xyyy+rrKxMERERmjx5sh555BE5nU7/VQ0A6PAcxhhju4hTlZeXy+Vy2S7jvNLawTQTEhL8WwjQRtLT01u1XFpamn8LOc94PJ4m7+szFhwAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsYDRsqJ0dAkCTWjOyNaNa28Fo2ACAdokAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVlxguwDYl52d3arlEhIS/FoHgPMLZ0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAWDkQLwi9YMajthwgT/F4IOgzMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCwUihnJycVi2XkJDg30Lgd60ZIFSS0tPTz9m2cP7iDAgAYAUBBACwokUBlJGRocsuu0yBgYEKDQ3VtGnTtGfPHp8+VVVVSk5OVr9+/dS7d2/NnDlTJSUlfi0aANDxtSiAcnJylJycrG3btmnLli2qqanR5MmTVVlZ6e1z991367333tP69euVk5OjgwcPasaMGX4vHADQsbXoIYTNmzf7vF67dq1CQ0O1Y8cOjR8/Xh6PRy+99JJee+01TZw4UZK0Zs0aXXTRRdq2bZsuv/xy/1UOAOjQzuoekMfjkSQFBwdLknbs2KGamholJiZ6+wwfPlwDBw5Ubm5ug+uorq5WeXm5TwMAdH6tDqC6ujotWbJEV155pUaMGCFJKi4uVvfu3dWnTx+fvmFhYSouLm5wPRkZGXK5XN42YMCA1pYEAOhAWh1AycnJ+vLLL/XGG2+cVQEpKSnyeDzeVlhYeFbrAwB0DK36IurixYv1/vvva+vWrbrwwgu9091ut44fP66ysjKfs6CSkhK53e4G1+V0OuV0OltTBgCgA2vRGZAxRosXL9aGDRv00UcfKTo62mf+6NGj1a1bN2VmZnqn7dmzR/v379fYsWP9UzEAoFNo0RlQcnKyXnvtNW3atEmBgYHe+zoul0sBAQFyuVy67bbbtHTpUgUHBysoKEh33nmnxo4dyxNwAAAfLQqg1atXS6o/BtiaNWs0b948SdLTTz+tLl26aObMmaqurtaUKVP03HPP+aVYAEDn4TDGGNtFnKq8vFwul8t2GTgDrRmMNCsry/+FdECtGewzLS3N/4UAbcjj8SgoKKjR+YwFBwCwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsYDRsA0CYYDRsA0C4RQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFa0KIAyMjJ02WWXKTAwUKGhoZo2bZr27Nnj0ychIUEOh8OnLVy40K9FAwA6vhYFUE5OjpKTk7Vt2zZt2bJFNTU1mjx5siorK3363X777SoqKvK2J554wq9FAwA6vgta0nnz5s0+r9euXavQ0FDt2LFD48eP907v2bOn3G63fyoEAHRKZ3UPyOPxSJKCg4N9pq9bt04hISEaMWKEUlJSdOzYsUbXUV1drfLycp8GADgPmFaqra0111xzjbnyyit9pr/wwgtm8+bNZvfu3ebVV181kZGRZvr06Y2uJzU11Uii0Wg0WidrHo+nyRxpdQAtXLjQREVFmcLCwib7ZWZmGkkmLy+vwflVVVXG4/F4W2FhofWdRqPRaLSzb80FUIvuAZ20ePFivf/++9q6dasuvPDCJvvGxcVJkvLy8hQTE1NvvtPplNPpbE0ZAIAOrEUBZIzRnXfeqQ0bNig7O1vR0dHNLrNr1y5JUnh4eKsKBAB0Ti0KoOTkZL322mvatGmTAgMDVVxcLElyuVwKCAhQfn6+XnvtNf3sZz9Tv379tHv3bt19990aP368LrnkkjZ5AwCADqol933UyHW+NWvWGGOM2b9/vxk/frwJDg42TqfTxMbGmvvuu6/Z64Cn8ng81q9b0mg0Gu3sW3O/+x3/P1jajfLycrlcLttlAADOksfjUVBQUKPzGQsOAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGBFuwsgY4ztEgAAftDc7/N2F0AVFRW2SwAA+EFzv88dpp2dctTV1engwYMKDAyUw+HwmVdeXq4BAwaosLBQQUFBliq0j/1wAvvhBPbDCeyHE9rDfjDGqKKiQhEREerSpfHznAvOYU1npEuXLrrwwgub7BMUFHReH2AnsR9OYD+cwH44gf1wgu394HK5mu3T7i7BAQDODwQQAMCKDhVATqdTqampcjqdtkuxiv1wAvvhBPbDCeyHEzrSfmh3DyEAAM4PHeoMCADQeRBAAAArCCAAgBUEEADACgIIAGBFhwmgVatWadCgQerRo4fi4uL0ySef2C7pnEtLS5PD4fBpw4cPt11Wm9u6dauuu+46RUREyOFwaOPGjT7zjTF66KGHFB4eroCAACUmJmrv3r12im1Dze2HefPm1Ts+pk6daqfYNpKRkaHLLrtMgYGBCg0N1bRp07Rnzx6fPlVVVUpOTla/fv3Uu3dvzZw5UyUlJZYqbhtnsh8SEhLqHQ8LFy60VHHDOkQAvfnmm1q6dKlSU1P12WefadSoUZoyZYoOHTpku7Rz7uKLL1ZRUZG3/e1vf7NdUpurrKzUqFGjtGrVqgbnP/HEE3rmmWf0/PPPa/v27erVq5emTJmiqqqqc1xp22puP0jS1KlTfY6P119//RxW2PZycnKUnJysbdu2acuWLaqpqdHkyZNVWVnp7XP33Xfrvffe0/r165WTk6ODBw9qxowZFqv2vzPZD5J0++23+xwPTzzxhKWKG2E6gDFjxpjk5GTv69raWhMREWEyMjIsVnXupaammlGjRtkuwypJZsOGDd7XdXV1xu12myeffNI7rayszDidTvP6669bqPDcOH0/GGPM3LlzzQ033GClHlsOHTpkJJmcnBxjzImffbdu3cz69eu9ff73f//XSDK5ubm2ymxzp+8HY4yJj483d911l72izkC7PwM6fvy4duzYocTERO+0Ll26KDExUbm5uRYrs2Pv3r2KiIjQ4MGDdfPNN2v//v22S7KqoKBAxcXFPseHy+VSXFzceXl8ZGdnKzQ0VMOGDdOiRYtUWlpqu6Q25fF4JEnBwcGSpB07dqimpsbneBg+fLgGDhzYqY+H0/fDSevWrVNISIhGjBihlJQUHTt2zEZ5jWp3o2Gf7siRI6qtrVVYWJjP9LCwMH3zzTeWqrIjLi5Oa9eu1bBhw1RUVKT09HRdddVV+vLLLxUYGGi7PCuKi4slqcHj4+S888XUqVM1Y8YMRUdHKz8/Xw8++KCSkpKUm5urrl272i7P7+rq6rRkyRJdeeWVGjFihKQTx0P37t3Vp08fn76d+XhoaD9I0k033aSoqChFRERo9+7duv/++7Vnzx69++67Fqv11e4DCP+SlJTk/fcll1yiuLg4RUVF6a233tJtt91msTK0B3PmzPH+e+TIkbrkkksUExOj7OxsTZo0yWJlbSM5OVlffvnleXEftCmN7YcFCxZ4/z1y5EiFh4dr0qRJys/PV0xMzLkus0Ht/hJcSEiIunbtWu8plpKSErndbktVtQ99+vTR0KFDlZeXZ7sUa04eAxwf9Q0ePFghISGd8vhYvHix3n//fWVlZfn8/TC3263jx4+rrKzMp39nPR4a2w8NiYuLk6R2dTy0+wDq3r27Ro8erczMTO+0uro6ZWZmauzYsRYrs+/o0aPKz89XeHi47VKsiY6Oltvt9jk+ysvLtX379vP++Dhw4IBKS0s71fFhjNHixYu1YcMGffTRR4qOjvaZP3r0aHXr1s3neNizZ4/279/fqY6H5vZDQ3bt2iVJ7et4sP0UxJl44403jNPpNGvXrjVff/21WbBggenTp48pLi62Xdo5dc8995js7GxTUFBg/v73v5vExEQTEhJiDh06ZLu0NlVRUWF27txpdu7caSSZFStWmJ07d5pvv/3WGGPM7373O9OnTx+zadMms3v3bnPDDTeY6Oho88MPP1iu3L+a2g8VFRXm3nvvNbm5uaagoMB8+OGH5t/+7d/MkCFDTFVVle3S/WbRokXG5XKZ7OxsU1RU5G3Hjh3z9lm4cKEZOHCg+eijj8ynn35qxo4da8aOHWuxav9rbj/k5eWZhx9+2Hz66aemoKDAbNq0yQwePNiMHz/ecuW+OkQAGWPMs88+awYOHGi6d+9uxowZY7Zt22a7pHPuxhtvNOHh4aZ79+4mMjLS3HjjjSYvL892WW0uKyvLSKrX5s6da4w58Sj28uXLTVhYmHE6nWbSpElmz549dotuA03th2PHjpnJkyeb/v37m27dupmoqChz++23d7oPaQ29f0lmzZo13j4//PCDueOOO0zfvn1Nz549zfTp001RUZG9ottAc/th//79Zvz48SY4ONg4nU4TGxtr7rvvPuPxeOwWfhr+HhAAwIp2fw8IANA5EUAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFf8PXVapDkcOyqUAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo6klEQVR4nO3de3hU1b3G8XeIZIAYJoTcIUDCVbl5yiWiEKBQQqooiEWstKAIQoNyqdimz0HgaI1F2yJItfRUEBQVuWl9LB7k2moCJYoILUhoEBAIAcwkBBIwWecPDnMYkgATJllJ+H6eZz0Ps/daM7/Z2eTN3nvNHocxxggAgGpWz3YBAIAbEwEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEv5s1a5YcDodOnDjht+ccM2aMWrVq5bfnqws2bdokh8OhTZs2eZbVtO1UXo1V7cCBA3I4HHrxxRf99pw23seNgACqYg6H45qa7R27X79+6tSpk9UaqtI777yjUaNGqW3btnI4HOrXr991P2e/fv28foahoaHq0aOHXnvtNZWWll5/0dXoueee05o1a6y9/uLFi+VwOLR9+3ZrNVSlvXv3aurUqbrjjjvUoEEDORwOHThwwHZZ1t1ku4C6bunSpV6PlyxZonXr1pVZfsstt1RnWTecV155RZmZmerRo4dOnjzpt+dt3ry50tLSJEm5ublasmSJxo4dq6+++krPP/+8317nWv3pT3+qVPg999xzuv/++zV06FD/FwWlp6dr3rx5uvXWW3XLLbdox44dtkuqEQigKjZq1CivxxkZGVq3bl2Z5Zc7c+aMGjVqVJWl3VCWLl2qZs2aqV69en490nO5XF4/y8cee0zt27fXyy+/rGeeeUb169cvM6a0tFTnzp1TgwYN/FbHReW9Huy75557lJeXp+DgYL344osE0P/hFFwNcPH0V2ZmphITE9WoUSP96le/knThFN6sWbPKjGnVqpXGjBnjtSwvL09TpkxRbGysnE6n2rRpo9/85jd+Ox20c+dOjRkzRvHx8WrQoIGioqL0yCOPVHhEceLECY0YMUKNGzdW06ZNNXnyZBUVFZXp98Ybb6hbt25q2LChQkNDNXLkSB06dOiq9Rw9elR79uzR+fPnr9o3NjZW9epV/e7eqFEj3X777SosLFRubq6kCz/DSZMm6c0331THjh3ldDq1du1aSdI333yjRx55RJGRkXI6nerYsaNee+21Ms97+PBhDR06VEFBQYqIiNDUqVNVXFxcpl9514BKS0v10ksvqXPnzmrQoIHCw8M1ePBgz+kuh8OhwsJCvf76657TiZfuW/6usbLOnTunp59+Wt26dZPL5VJQUJD69OmjjRs3Vjjm97//vVq2bKmGDRuqb9++2rVrV5k+e/bs0f3336/Q0FA1aNBA3bt31/vvv3/Ves6cOaM9e/Zc07XO0NBQBQcHX7XfjYYjoBri5MmTSk5O1siRIzVq1ChFRkb6NP7MmTPq27evvvnmGz322GNq0aKFPv30U6Wmpuro0aOaO3fudde4bt06/fvf/9bDDz+sqKgo7d69WwsXLtTu3buVkZEhh8Ph1X/EiBFq1aqV0tLSlJGRoXnz5unbb7/VkiVLPH1+/etfa8aMGRoxYoQeffRR5ebmav78+UpMTNTnn3+ukJCQCutJTU3V66+/ruzs7Bp14f3f//63AgICvGrfsGGDli9frkmTJiksLEytWrVSTk6Obr/9dk9AhYeH669//avGjh2r/Px8TZkyRZJ09uxZDRgwQAcPHtQTTzyhmJgYLV26VBs2bLimesaOHavFixcrOTlZjz76qL777jv97W9/U0ZGhrp3766lS5fq0UcfVc+ePTV+/HhJUuvWrSWp2mq8Fvn5+frv//5vPfjggxo3bpwKCgr05z//WUlJSdq2bZtuu+02r/5LlixRQUGBUlJSVFRUpJdeeknf//739eWXX3r+f+3evVt33nmnmjVrpl/+8pcKCgrS8uXLNXToUK1cuVLDhg2rsJ5t27apf//+mjlzZrl/JOIaGFSrlJQUc/lm79u3r5FkXn311TL9JZmZM2eWWd6yZUszevRoz+NnnnnGBAUFma+++sqr3y9/+UsTEBBgDh48eMW6+vbtazp27HjFPmfOnCmz7K233jKSzJYtWzzLZs6caSSZe+65x6vvz372MyPJfPHFF8YYYw4cOGACAgLMr3/9a69+X375pbnpppu8lo8ePdq0bNnSq9/o0aONJJOdnX3Fui/XsWNH07dvX5/GlKdv376mQ4cOJjc31+Tm5pp//etf5oknnjCSzJAhQzz9JJl69eqZ3bt3e40fO3asiY6ONidOnPBaPnLkSONyuTzbe+7cuUaSWb58uadPYWGhadOmjZFkNm7c6Fl++XbasGGDkWSeeOKJMvWXlpZ6/h0UFOS1P1VljeVZtGiRkWT+8Y9/VNjnu+++M8XFxV7Lvv32WxMZGWkeeeQRz7Ls7GwjyTRs2NAcPnzYs3zr1q1Gkpk6dapn2YABA0znzp1NUVGRZ1lpaam54447TNu2bT3LNm7cWOZ9XFxW3v/PK3nhhRcqtd/WRZyCqyGcTqcefvjhSo9/99131adPHzVp0kQnTpzwtIEDB6qkpERbtmy57hobNmzo+XdRUZFOnDih22+/XZL02WeflemfkpLi9fjxxx+XJH344YeSpFWrVqm0tFQjRozwqjkqKkpt27a94qkV6cLMKWOM1aOfPXv2KDw8XOHh4brllls0f/583XXXXWVOUfXt21e33nqr57ExRitXrtSQIUNkjPF6/0lJSXK73Z5t+uGHHyo6Olr333+/Z3yjRo08RytXsnLlSjkcDs2cObPMusuPWC9XXTVeq4CAAAUGBkq6cFrx1KlT+u6779S9e/dy97+hQ4eqWbNmnsc9e/ZUQkKCZ/87deqUNmzYoBEjRqigoMDz3k6ePKmkpCTt27dP33zzTYX19OvXT8YYjn6uA6fgaohmzZp5/nNVxr59+7Rz506Fh4eXu/748eOVfu6LTp06pdmzZ+vtt98u83xut7tM/7Zt23o9bt26terVq+eZfrpv3z4ZY8r0u6g2XFBv1aqV/vSnP8nhcKhBgwZq27atIiIiyvSLi4vzepybm6u8vDwtXLhQCxcuLPe5L27jr7/+Wm3atCkTGO3bt79qffv371dMTIxCQ0Ov9S1Ve42+eP311/Xb3/62zLW/y7evVHb/k6R27dpp+fLlkqSsrCwZYzRjxgzNmDGj3Nc7fvy4V4jBvwigGuLSo4trUVJS4vW4tLRUP/jBD/TUU0+V279du3aVru2iESNG6NNPP9X06dN122236eabb1ZpaakGDx58TRMdLv/lVFpaKofDob/+9a8KCAgo0//mm2++7pqrWlBQkAYOHHjVfpf/fC9ur1GjRmn06NHljunSpcv1F3gdalqNb7zxhsaMGaOhQ4dq+vTpioiIUEBAgNLS0rR//36fn+/i+3vyySeVlJRUbp82bdpcV824MgKohmvSpIny8vK8lp07d05Hjx71Wta6dWudPn36mn4ZVsa3336r9evXa/bs2Xr66ac9y/ft21fhmH379nn9ZZqVlaXS0lLPKbPWrVvLGKO4uDi/BGRtEh4eruDgYJWUlFz1Z9ayZUvt2rVLxhivEN+7d+9VX6d169b66KOPdOrUqSseBZV3Oq66arxWK1asUHx8vFatWuX1GuWdXpTK3ze/+uorz/4XHx8v6cKRdlX9v8GVcQ2ohmvdunWZ6zcLFy4scwQ0YsQIpaen66OPPirzHHl5efruu++uq46LRyjGGK/lV5pdt2DBAq/H8+fPlyQlJydLku677z4FBARo9uzZZZ7XGHPVD4z6Mg27pgkICNDw4cO1cuXKcqcGX5zCLUk//OEPdeTIEa1YscKz7MyZMxWeFrvU8OHDZYzR7Nmzy6y7dJsHBQWV+UOnumq8VuXtg1u3blV6enq5/desWeN1DWfbtm3aunWrZ/+LiIhQv3799Mc//rHMH3SS9/srjy/TsFE+joBquEcffVQTJkzQ8OHD9YMf/EBffPGFPvroI4WFhXn1mz59ut5//33dfffdGjNmjLp166bCwkJ9+eWXWrFihQ4cOFBmzOVyc3P17LPPllkeFxenhx56SImJiZozZ47Onz+vZs2a6X/+53+UnZ1d4fNlZ2frnnvu0eDBg5Wenq433nhDP/7xj9W1a1dJF8L12WefVWpqqg4cOKChQ4cqODhY2dnZWr16tcaPH68nn3yywuf3ZRr2li1bPEGem5urwsJCz3tNTExUYmKip6/D4VDfvn2r/PZIzz//vDZu3KiEhASNGzdOt956q06dOqXPPvtMH3/8sU6dOiVJGjdunF5++WX99Kc/VWZmpqKjo7V06dJr+qBy//799ZOf/ETz5s3Tvn37PKdL//a3v6l///6aNGmSJKlbt276+OOP9bvf/U4xMTGKi4tTQkJCtdR4qddee83zGalLTZ48WXfffbdWrVqlYcOG6a677lJ2drZeffVV3XrrrTp9+nSZMW3atFHv3r01ceJEFRcXa+7cuWratKnXaeoFCxaod+/e6ty5s8aNG6f4+Hjl5OQoPT1dhw8f1hdffFFhrb5Mw3a73Z4/wD755BNJ0ssvv6yQkBCFhIR4fg43nGqfd3eDq2gadkVToEtKSswvfvELExYWZho1amSSkpJMVlZWmWnYxhhTUFBgUlNTTZs2bUxgYKAJCwszd9xxh3nxxRfNuXPnrljXxang5bUBAwYYY4w5fPiwGTZsmAkJCTEul8v86Ec/MkeOHCkzFfXiNOx//vOf5v777zfBwcGmSZMmZtKkSebs2bNlXnvlypWmd+/eJigoyAQFBZkOHTqYlJQUs3fvXk+f652GfbGm8tqltRcUFBhJZuTIkVd9zmuZum7MhWnYKSkp5a7LyckxKSkpJjY21tSvX99ERUWZAQMGmIULF3r1+/rrr80999xjGjVqZMLCwszkyZPN2rVrrzoN25gL05dfeOEF06FDBxMYGGjCw8NNcnKyyczM9PTZs2ePSUxMNA0bNjSSvPYtf9dYnovTsCtqhw4dMqWlpea5554zLVu2NE6n0/zHf/yH+eCDD8q854vTsF944QXz29/+1sTGxhqn02n69Onj+QjApfbv329++tOfmqioKFO/fn3TrFkzc/fdd5sVK1Z4+lzvNOyLNZXXLv953Ugcxlx27gO4gX344Ye6++679cUXX6hz5862ywHqNK4BAZfYuHGjRo4cSfgA1YAjIACAFRwBAQCsIIAAAFYQQAAAKwggAIAVNe6DqKWlpTpy5IiCg4OverdeAEDNY4xRQUGBYmJirvhFkDUugI4cOaLY2FjbZQAArtOhQ4fUvHnzCtfXuFNwfG0tANQNV/t9XmUBtGDBArVq1UoNGjRQQkKCtm3bdk3jOO0GAHXD1X6fV0kAvfPOO5o2bZpmzpypzz77TF27dlVSUpJfvhQNAFBHVMUN5nr27Ol188WSkhITExNj0tLSrjrW7XZf8aaENBqNRqsdze12X/H3vd+PgM6dO6fMzEyvL3iqV6+eBg4cWO73dhQXFys/P9+rAQDqPr8H0IkTJ1RSUqLIyEiv5ZGRkTp27FiZ/mlpaXK5XJ7GDDgAuDFYnwWXmpoqt9vtaYcOHbJdEgCgGvj9c0BhYWEKCAhQTk6O1/KcnBxFRUWV6e90OuV0Ov1dBgCghvP7EVBgYKC6deum9evXe5aVlpZq/fr16tWrl79fDgBQS1XJnRCmTZum0aNHq3v37urZs6fmzp2rwsJCPfzww1XxcgCAWqhKAuiBBx5Qbm6unn76aR07dky33Xab1q5dW2ZiAgDgxlXjvhE1Pz9fLpfLdhkAgOvkdrvVuHHjCtdbnwUHALgxEUAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhxk+0CANQ8M2bM8HnMrFmzfB6zbNkyn8f85Cc/8XkMaiaOgAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACm5GCtRhd9xxR6XGpaam+jympKTE5zGZmZk+j0HdwREQAMAKAggAYIXfA2jWrFlyOBxerUOHDv5+GQBALVcl14A6duyojz/++P9f5CYuNQEAvFVJMtx0002KioqqiqcGANQRVXINaN++fYqJiVF8fLweeughHTx4sMK+xcXFys/P92oAgLrP7wGUkJCgxYsXa+3atXrllVeUnZ2tPn36qKCgoNz+aWlpcrlcnhYbG+vvkgAANZDfAyg5OVk/+tGP1KVLFyUlJenDDz9UXl6eli9fXm7/1NRUud1uTzt06JC/SwIA1EBVPjsgJCRE7dq1U1ZWVrnrnU6nnE5nVZcBAKhhqvxzQKdPn9b+/fsVHR1d1S8FAKhF/B5ATz75pDZv3qwDBw7o008/1bBhwxQQEKAHH3zQ3y8FAKjF/H4K7vDhw3rwwQd18uRJhYeHq3fv3srIyFB4eLi/XwoAUIv5PYDefvttfz8lgEpq165dpcY1aNDA5zGlpaU+jzl8+LDPY1B3cC84AIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCiyr+QDoB/jBo1yucxTz31VBVUUr6zZ8/6PGbFihVVUAlqC46AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAV3wwZqiccee8znMR06dKiCSsrXp0+fanst1A0cAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFdyMFLCge/fuPo/p0aNHFVTiP7t377ZdAmoZjoAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwApuRgpcp/DwcJ/HLFq0yOcxgYGBPo+prE8++cTnMaWlpVVQCeoyjoAAAFYQQAAAK3wOoC1btmjIkCGKiYmRw+HQmjVrvNYbY/T0008rOjpaDRs21MCBA7Vv3z5/1QsAqCN8DqDCwkJ17dpVCxYsKHf9nDlzNG/ePL366qvaunWrgoKClJSUpKKiousuFgBQd/g8CSE5OVnJycnlrjPGaO7cufrP//xP3XvvvZKkJUuWKDIyUmvWrNHIkSOvr1oAQJ3h12tA2dnZOnbsmAYOHOhZ5nK5lJCQoPT09HLHFBcXKz8/36sBAOo+vwbQsWPHJEmRkZFeyyMjIz3rLpeWliaXy+VpsbGx/iwJAFBDWZ8Fl5qaKrfb7WmHDh2yXRIAoBr4NYCioqIkSTk5OV7Lc3JyPOsu53Q61bhxY68GAKj7/BpAcXFxioqK0vr16z3L8vPztXXrVvXq1cufLwUAqOV8ngV3+vRpZWVleR5nZ2drx44dCg0NVYsWLTRlyhQ9++yzatu2reLi4jRjxgzFxMRo6NCh/qwbAFDL+RxA27dvV//+/T2Pp02bJkkaPXq0Fi9erKeeekqFhYUaP3688vLy1Lt3b61du1YNGjTwX9UAgFrPYYwxtou4VH5+vlwul+0ygGv2+OOP+zzmpZdeqoJKyqrsB8Bbtmzp85jc3NxKvRbqLrfbfcXr+tZnwQEAbkwEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY4fPXMQB1WUhIiM9jJk+e7P9C/OQPf/hDpcZxZ2tUB46AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKbkYKXGLUqFE+j4mPj/d5jMPh8HnM1q1bfR4ze/Zsn8cA1YUjIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgpuRok6qX79+pcalpqb6uZLyGWN8HvPJJ5/4PKagoMDnMUB14QgIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKzgZqSok8aPH1+pcdHR0X6upHwOh8PnMatWraqCSgB7OAICAFhBAAEArPA5gLZs2aIhQ4YoJiZGDodDa9as8Vo/ZswYORwOrzZ48GB/1QsAqCN8DqDCwkJ17dpVCxYsqLDP4MGDdfToUU976623rqtIAEDd4/MkhOTkZCUnJ1+xj9PpVFRUVKWLAgDUfVVyDWjTpk2KiIhQ+/btNXHiRJ08ebLCvsXFxcrPz/dqAIC6z+8BNHjwYC1ZskTr16/Xb37zG23evFnJyckqKSkpt39aWppcLpenxcbG+rskAEAN5PfPAY0cOdLz786dO6tLly5q3bq1Nm3apAEDBpTpn5qaqmnTpnke5+fnE0IAcAOo8mnY8fHxCgsLU1ZWVrnrnU6nGjdu7NUAAHVflQfQ4cOHdfLkyWr7hDkAoHbw+RTc6dOnvY5msrOztWPHDoWGhio0NFSzZ8/W8OHDFRUVpf379+upp55SmzZtlJSU5NfCAQC1m88BtH37dvXv39/z+OL1m9GjR+uVV17Rzp079frrrysvL08xMTEaNGiQnnnmGTmdTv9VDQCo9RzGGGO7iEvl5+fL5XLZLgO1XE5OTqXGhYeH+7mS8l3pg9wV+fnPf+7zmHPnzvk8BvAXt9t9xev63AsOAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVvj9K7kBf5s4caLPY6rrrtaSlJub6/OY+fPn+zyGO1ujruEICABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCs4GakqPGSkpJsl3BFJ06c8HnMV199VQWVALULR0AAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAU3I0W1atKkic9jEhISqqAS/zl+/LjtEoBaiSMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCm5GiWn3ve9/zeUxISIj/C/GjxYsX2y4BqJU4AgIAWEEAAQCs8CmA0tLS1KNHDwUHBysiIkJDhw7V3r17vfoUFRUpJSVFTZs21c0336zhw4crJyfHr0UDAGo/nwJo8+bNSklJUUZGhtatW6fz589r0KBBKiws9PSZOnWq/vKXv+jdd9/V5s2bdeTIEd13331+LxwAULv5NAlh7dq1Xo8XL16siIgIZWZmKjExUW63W3/+85+1bNkyff/735ckLVq0SLfccosyMjJ0++23+69yAECtdl3XgNxutyQpNDRUkpSZmanz589r4MCBnj4dOnRQixYtlJ6eXu5zFBcXKz8/36sBAOq+SgdQaWmppkyZojvvvFOdOnWSJB07dkyBgYFlps1GRkbq2LFj5T5PWlqaXC6Xp8XGxla2JABALVLpAEpJSdGuXbv09ttvX1cBqampcrvdnnbo0KHrej4AQO1QqQ+iTpo0SR988IG2bNmi5s2be5ZHRUXp3LlzysvL8zoKysnJUVRUVLnP5XQ65XQ6K1MGAKAW8+kIyBijSZMmafXq1dqwYYPi4uK81nfr1k3169fX+vXrPcv27t2rgwcPqlevXv6pGABQJ/h0BJSSkqJly5bpvffeU3BwsOe6jsvlUsOGDeVyuTR27FhNmzZNoaGhaty4sR5//HH16tWLGXAAAC8+BdArr7wiSerXr5/X8kWLFmnMmDGSpN///veqV6+ehg8fruLiYiUlJekPf/iDX4oFANQdDmOMsV3EpfLz8+VyuWyXgSqSlJTk85j333/f5zH169f3eYwknTp1yucxHTp08HnMiRMnfB4D1DZut1uNGzeucD33ggMAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVlfpGVKCyQkNDfR5T2TtbV8Y//vEPn8dwZ2ugcjgCAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArHMYYY7uIS+Xn58vlctkuA1UkMDDQ5zH79+/3eUx0dLTPYySpX79+Po/5+9//XqnXAuo6t9utxo0bV7ieIyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsOIm2wXgxnLu3Dmfx8TGxlZBJQBs4wgIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBU+BVBaWpp69Oih4OBgRUREaOjQodq7d69Xn379+snhcHi1CRMm+LVoAEDt51MAbd68WSkpKcrIyNC6det0/vx5DRo0SIWFhV79xo0bp6NHj3ranDlz/Fo0AKD28+kbUdeuXev1ePHixYqIiFBmZqYSExM9yxs1aqSoqCj/VAgAqJOu6xqQ2+2WJIWGhnotf/PNNxUWFqZOnTopNTVVZ86cqfA5iouLlZ+f79UAADcAU0klJSXmrrvuMnfeeafX8j/+8Y9m7dq1ZufOneaNN94wzZo1M8OGDavweWbOnGkk0Wg0Gq2ONbfbfcUcqXQATZgwwbRs2dIcOnToiv3Wr19vJJmsrKxy1xcVFRm32+1phw4dsr7RaDQajXb97WoB5NM1oIsmTZqkDz74QFu2bFHz5s2v2DchIUGSlJWVpdatW5dZ73Q65XQ6K1MGAKAW8ymAjDF6/PHHtXr1am3atElxcXFXHbNjxw5JUnR0dKUKBADUTT4FUEpKipYtW6b33ntPwcHBOnbsmCTJ5XKpYcOG2r9/v5YtW6Yf/vCHatq0qXbu3KmpU6cqMTFRXbp0qZI3AACopXy57qMKzvMtWrTIGGPMwYMHTWJiogkNDTVOp9O0adPGTJ8+/arnAS/ldrutn7ek0Wg02vW3q/3ud/xfsNQY+fn5crlctssAAFwnt9utxo0bV7iee8EBAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKyocQFkjLFdAgDAD672+7zGBVBBQYHtEgAAfnC13+cOU8MOOUpLS3XkyBEFBwfL4XB4rcvPz1dsbKwOHTqkxo0bW6rQPrbDBWyHC9gOF7AdLqgJ28EYo4KCAsXExKhevYqPc26qxpquSb169dS8efMr9mncuPENvYNdxHa4gO1wAdvhArbDBba3g8vlumqfGncKDgBwYyCAAABW1KoAcjqdmjlzppxOp+1SrGI7XMB2uIDtcAHb4YLatB1q3CQEAMCNoVYdAQEA6g4CCABgBQEEALCCAAIAWEEAAQCsqDUBtGDBArVq1UoNGjRQQkKCtm3bZrukajdr1iw5HA6v1qFDB9tlVbktW7ZoyJAhiomJkcPh0Jo1a7zWG2P09NNPKzo6Wg0bNtTAgQO1b98+O8VWoatthzFjxpTZPwYPHmyn2CqSlpamHj16KDg4WBERERo6dKj27t3r1aeoqEgpKSlq2rSpbr75Zg0fPlw5OTmWKq4a17Id+vXrV2Z/mDBhgqWKy1crAuidd97RtGnTNHPmTH322Wfq2rWrkpKSdPz4cdulVbuOHTvq6NGjnvb3v//ddklVrrCwUF27dtWCBQvKXT9nzhzNmzdPr776qrZu3aqgoCAlJSWpqKiomiutWlfbDpI0ePBgr/3jrbfeqsYKq97mzZuVkpKijIwMrVu3TufPn9egQYNUWFjo6TN16lT95S9/0bvvvqvNmzfryJEjuu+++yxW7X/Xsh0kady4cV77w5w5cyxVXAFTC/Ts2dOkpKR4HpeUlJiYmBiTlpZmsarqN3PmTNO1a1fbZVglyaxevdrzuLS01ERFRZkXXnjBsywvL884nU7z1ltvWaiwely+HYwxZvTo0ebee++1Uo8tx48fN5LM5s2bjTEXfvb169c37777rqfPv/71LyPJpKen2yqzyl2+HYwxpm/fvmby5Mn2iroGNf4I6Ny5c8rMzNTAgQM9y+rVq6eBAwcqPT3dYmV27Nu3TzExMYqPj9dDDz2kgwcP2i7JquzsbB07dsxr/3C5XEpISLgh949NmzYpIiJC7du318SJE3Xy5EnbJVUpt9stSQoNDZUkZWZm6vz58177Q4cOHdSiRYs6vT9cvh0uevPNNxUWFqZOnTopNTVVZ86csVFehWrc3bAvd+LECZWUlCgyMtJreWRkpPbs2WOpKjsSEhK0ePFitW/fXkePHtXs2bPVp08f7dq1S8HBwbbLs+LYsWOSVO7+cXHdjWLw4MG67777FBcXp/379+tXv/qVkpOTlZ6eroCAANvl+V1paammTJmiO++8U506dZJ0YX8IDAxUSEiIV9+6vD+Utx0k6cc//rFatmypmJgY7dy5U7/4xS+0d+9erVq1ymK13mp8AOH/JScne/7dpUsXJSQkqGXLllq+fLnGjh1rsTLUBCNHjvT8u3PnzurSpYtat26tTZs2acCAARYrqxopKSnatWvXDXEd9Eoq2g7jx4/3/Ltz586Kjo7WgAEDtH//frVu3bq6yyxXjT8FFxYWpoCAgDKzWHJychQVFWWpqpohJCRE7dq1U1ZWlu1SrLm4D7B/lBUfH6+wsLA6uX9MmjRJH3zwgTZu3Oj1/WFRUVE6d+6c8vLyvPrX1f2hou1QnoSEBEmqUftDjQ+gwMBAdevWTevXr/csKy0t1fr169WrVy+Lldl3+vRp7d+/X9HR0bZLsSYuLk5RUVFe+0d+fr62bt16w+8fhw8f1smTJ+vU/mGM0aRJk7R69Wpt2LBBcXFxXuu7deum+vXre+0Pe/fu1cGDB+vU/nC17VCeHTt2SFLN2h9sz4K4Fm+//bZxOp1m8eLF5p///KcZP368CQkJMceOHbNdWrX6+c9/bjZt2mSys7PNJ598YgYOHGjCwsLM8ePHbZdWpQoKCsznn39uPv/8cyPJ/O53vzOff/65+frrr40xxjz//PMmJCTEvPfee2bnzp3m3nvvNXFxcebs2bOWK/evK22HgoIC8+STT5r09HSTnZ1tPv74Y/O9733PtG3b1hQVFdku3W8mTpxoXC6X2bRpkzl69KinnTlzxtNnwoQJpkWLFmbDhg1m+/btplevXqZXr14Wq/a/q22HrKws81//9V9m+/btJjs727z33nsmPj7eJCYmWq7cW60IIGOMmT9/vmnRooUJDAw0PXv2NBkZGbZLqnYPPPCAiY6ONoGBgaZZs2bmgQceMFlZWbbLqnIbN240ksq00aNHG2MuTMWeMWOGiYyMNE6n0wwYMMDs3bvXbtFV4Erb4cyZM2bQoEEmPDzc1K9f37Rs2dKMGzeuzv2RVt77l2QWLVrk6XP27Fnzs5/9zDRp0sQ0atTIDBs2zBw9etRe0VXgatvh4MGDJjEx0YSGhhqn02natGljpk+fbtxut93CL8P3AQEArKjx14AAAHUTAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY8b9/IO1Zkn0kswAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsnElEQVR4nO3de1TU9b7/8ddAOirCGAJyURHxgjsvrU1FVqIlCezdxVvmtgvaxZ1hJ7OyaG9vWXGyy9baZrVOR3Pvrpra5Zws84K1Q1tZZml6hDAtAZWdoBBo8Pn94XJ+jlx0RuAD+Hys9V3L+c7nPd/3fP3Ca74z3/ngMMYYAQDQyPxsNwAAODcRQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQGgQs2bNksPh0MGDB+vtMcePH69u3brV2+O1BIsXL5bD4dDu3bvd64YMGaIhQ4ZY6+lUNfXY0NavXy+Hw6Fly5bV22PaeB4tHQHUCBwOxxkt69evt9rnkCFD1LdvX6s9NKQjR45oypQp6ty5s5xOp/r06aOFCxee1WN269bN4/8wLCxMgwYN0ooVK+qp68ZRVlamWbNmWT0GG+JFS1Pz97//XX369JHT6VRUVJSmTp2q0tJS221Zc57tBs4F//jHPzxuL1myRKtXr662vk+fPo3Z1jmlsrJSycnJ+vLLL5Wenq6ePXvqo48+0t13361ffvlFjzzyiM+PfeGFF+r++++XJO3bt08vvfSSRo4cqYULF+quu+6qr6dwxj7++GOva8rKyjR79mxJalJnTy3JQw89pLlz52r06NG69957tX37dj3//PPatm2bPvroI9vtWUEANYKbb77Z4/bGjRu1evXqautPVVZWpnbt2jVka+eM5cuX6/PPP9crr7yi2267TZI0adIkjR49WnPmzNEdd9yhsLAwnx47KirK4//y1ltvVY8ePfS3v/2t1gD67bffVFVVpdatW/u0zbo0xGPi7OTn5+vZZ5/VLbfcoiVLlrjX9+rVS/fcc4/ef/99XXvttRY7tIO34JqIE29/bd68WYmJiWrXrp37VbnD4dCsWbOq1XTr1k3jx4/3WHfo0CFNmTJFXbp0kdPpVI8ePfTkk0+qqqqqXvrcunWrxo8fr+7du6tNmzYKDw/XbbfdpqKiohrHHzx4UGPGjFFQUJA6duyoe++9V+Xl5dXG/fOf/1R8fLzatm2r4OBgjR07Vnv37j1tP/n5+dqxY4eOHTtW57hPP/1UkjR27FiP9WPHjlV5ebnefffd027rTIWHh6tPnz7Ky8uTJO3evVsOh0NPP/205s2bp9jYWDmdTm3fvl2StGPHDo0ePVrBwcFq06aNLrroIr333nvVHnfbtm266qqr1LZtW3Xu3FmPPfZYjf+vNX0GVF5erlmzZqlXr15q06aNIiIiNHLkSOXm5mr37t0KDQ2VJM2ePdv9duLJx1x99+irf//733rggQfUr18/tW/fXkFBQUpNTdU333xT4/jKyko98sgjCg8PV0BAgK677roaj6tNmzYpJSVFLpdL7dq10+DBg/Wvf/3rtP0UFxdrx44dKi4urnNcdna2fvvttxqPP0l68803T7utlogzoCakqKhIqampGjt2rG6++WZ16tTJq/qysjINHjxYP//8s/785z+ra9eu+vzzz5WRkaH8/HzNmzfvrHtcvXq1fvjhB02YMEHh4eHatm2bXn75ZW3btk0bN26Uw+HwGD9mzBh169ZNmZmZ2rhxo5577jn98ssvHq8CH3/8cU2fPl1jxozRHXfcoQMHDuj5559XYmKivv76a3Xo0KHWfjIyMvTqq68qLy+vzgsUKioq5O/vX+3s4MQZ5ubNm3XnnXd6v0NqcOzYMe3du1cdO3b0WL9o0SKVl5dr4sSJcjqdCg4O1rZt23T55ZcrKipKDz/8sAICAvT2229r+PDheueddzRixAhJUkFBga688kr99ttv7nEvv/yy2rZte9p+Kisrdc0112jNmjUaO3as7r33Xh0+fFirV6/Wd999p6SkJC1cuFCTJk3SiBEjNHLkSElS//79JalRejxTP/zwg1auXKkbbrhBMTExKiws1EsvvaTBgwdr+/btioyM9Bj/+OOPy+Fw6KGHHtL+/fs1b948JSUlacuWLe6+1q5dq9TUVMXHx2vmzJny8/PTokWLdNVVV+nTTz/VJZdcUms/K1as0IQJE7Ro0aJqLwZPVlFRIUnV9sXJx985yaDRpaenm1N3/eDBg40k8+KLL1YbL8nMnDmz2vro6GiTlpbmvj1nzhwTEBBg/u///s9j3MMPP2z8/f3Nnj176uxr8ODB5oILLqhzTFlZWbV1b7zxhpFkNmzY4F43c+ZMI8lcd911HmPvvvtuI8l88803xhhjdu/ebfz9/c3jjz/uMe7bb7815513nsf6tLQ0Ex0d7TEuLS3NSDJ5eXl19v3MM88YSebTTz/1WP/www8bSeaaa66ps7420dHRZtiwYebAgQPmwIED5ptvvjFjx441ksw999xjjDEmLy/PSDJBQUFm//79HvVDhw41/fr1M+Xl5e51VVVV5rLLLjM9e/Z0r5syZYqRZDZt2uRet3//fuNyuao9/8GDB5vBgwe7b//3f/+3kWSeffbZav1XVVUZY4w5cOBArcdZQ/RYkxPHzIEDB2odU15ebiorKz3W5eXlGafTaR599FH3unXr1hlJJioqypSUlLjXv/3220aSmT9/vvt59OzZ0yQnJ7v3hTHHj/OYmBhz9dVXu9ctWrSo2vM4sW7RokV1PrfNmzcbSWbOnDke61etWmUkmfbt29dZ31LxFlwT4nQ6NWHCBJ/rly5dqkGDBun888/XwYMH3UtSUpIqKyu1YcOGs+7x5Fdw5eXlOnjwoC699FJJ0ldffVVtfHp6usfte+65R5L0v//7v5KOfzZTVVWlMWPGePQcHh6unj17at26dXX2s3jxYhljTnt59rhx4+RyuXTbbbdp9erV2r17t15++WW98MILkqRff/217ideh48//lihoaEKDQ3VgAEDtHTpUt1yyy168sknPcaNGjXK/VaXdPztpLVr12rMmDE6fPiw+7kXFRUpOTlZu3bt0s8//yzp+P669NJLPV6Nh4aG6qabbjptf++8845CQkLc+/5kp56xnqqxejxTTqdTfn7Hf21VVlaqqKhI7du3V+/evWs8/m699VYFBga6b48ePVoRERHu42/Lli3atWuXxo0bp6KiIvfzKy0t1dChQ7Vhw4Y630IcP368jDF1nv1I0u9//3slJCToySef1KJFi7R79259+OGH+vOf/6xWrVqd1fHXnPEWXBMSFRV1Vh8g79q1S1u3bvX4JXey/fv3+/zYJ/z73//W7Nmz9eabb1Z7vJreB+/Zs6fH7djYWPn5+bm/S7Fr1y4ZY6qNO6FVq1Zn3bN0/HOZ9957T7fccouGDRsmSQoKCtLzzz+vtLQ0tW/f3ufHTkhI0GOPPSaHw6F27dqpT58+Nb5tGBMT43E7JydHxhhNnz5d06dPr/Gx9+/fr6ioKP34449KSEiodn/v3r1P219ubq569+6t887z/se9sXo8U1VVVZo/f75eeOEF5eXlqbKy0n3fqW95StWPP4fDoR49engcf5KUlpZW6zaLi4t1/vnnn3Xv77zzjm688Ub3RTD+/v6aOnWqsrKytHPnzrN+/OaIAGpCvH2v/OQfPun4D+fVV1+tadOm1Ti+V69ePvd2wpgxY/T555/rwQcf1IUXXqj27durqqpKKSkpZ/Rh86mvuKuqquRwOPThhx/K39+/2vizCYZTJSYm6ocfftC3336r0tJSDRgwQPv27ZN0dvsmJCRESUlJpx136v/vif31wAMPKDk5ucaaHj16+NxXfWhqPT7xxBOaPn26brvtNs2ZM0fBwcHy8/PTlClTfLrY4UTNU089pQsvvLDGMfV1DEZFRemzzz7Trl27VFBQoJ49eyo8PFyRkZH18rPZHBFAzcD555+vQ4cOeaw7evSo8vPzPdbFxsbqyJEjZ/TL0Be//PKL1qxZo9mzZ2vGjBnu9SdeRdZk165dHq/8c3JyVFVV5X7LLDY2VsYYxcTENMoPob+/v8cvmk8++USSGmyf1aV79+6Sjp/lnW770dHRNe7nM3nlHBsbq02bNunYsWO1nlHW9lZcY/V4ppYtW6Yrr7xSr7zyisf6Q4cOKSQkpNr4U/sxxignJ8d9gUVsbKyk42fDjXUM9OzZ031mtn37duXn55/2LbyWis+AmoHY2Nhqn9+8/PLL1c6AxowZo+zs7Bq/1Hbo0CH99ttvZ9XHiTMUY4zH+rqurluwYIHH7eeff16SlJqaKkkaOXKk/P39NXv27GqPa4yp9fLuE870MuyaHDhwQE8++aT69+9vJYDCwsI0ZMgQvfTSS9VeTJzo74Q//OEP2rhxo7744guP+1977bXTbmfUqFE6ePCg/v73v1e778Q+P3E11qkvdBqrxzPl7+9f7ThZunSp+3OoUy1ZskSHDx923162bJny8/Pdx198fLxiY2P19NNP68iRI9XqT35+NTnTy7BrUlVVpWnTpqldu3ZWvrDcFHAG1AzccccduuuuuzRq1ChdffXV+uabb/TRRx9Ve8X34IMP6r333tM111yj8ePHKz4+XqWlpfr222+1bNky7d69u8ZXiSc7cOCAHnvssWrrY2JidNNNNykxMVFz587VsWPHFBUVpY8//tj9fZea5OXl6brrrlNKSoqys7P1z3/+U+PGjdOAAQMkHQ/Xxx57TBkZGdq9e7eGDx+uwMBA5eXlacWKFZo4caIeeOCBWh//TC/DlqTBgwdr4MCB6tGjhwoKCvTyyy/ryJEj+uCDD9wfbEvHv7cTExOjtLQ0LV68uM7HPFsLFizQFVdcoX79+unOO+9U9+7dVVhYqOzsbP3000/u77dMmzZN//jHP5SSkqJ7773XfYlzdHS0tm7dWuc2br31Vi1ZskRTp07VF198oUGDBqm0tFSffPKJ7r77bl1//fVq27atfve73+mtt95Sr169FBwcrL59+6pv376N0uPJnn322WpfwPbz89Mjjzyia665Ro8++qgmTJigyy67TN9++61ee+0195naqYKDg3XFFVdowoQJKiws1Lx589SjRw/3Jfd+fn76r//6L6WmpuqCCy7QhAkTFBUVpZ9//lnr1q1TUFCQ3n///Vp7PdPLsCW5vwN34YUX6tixY3r99df1xRdf6NVXX1XXrl3PeP+0KHYuvju31XYZdm2XQFdWVpqHHnrIhISEmHbt2pnk5GSTk5NT7TJsY4w5fPiwycjIMD169DCtW7c2ISEh5rLLLjNPP/20OXr0aJ19nbgUvKZl6NChxhhjfvrpJzNixAjToUMH43K5zA033GD27dtX7RLeE5fUbt++3YwePdoEBgaa888/30yePNn8+uuv1bb9zjvvmCuuuMIEBASYgIAAExcXZ9LT083OnTvdY87mMmxjjLnvvvtM9+7djdPpNKGhoWbcuHEmNze32rhvv/3WSDIPP/zwaR8zOjra/PGPf6xzzInLsJ966qka78/NzTW33nqrCQ8PN61atTJRUVHmmmuuMcuWLfMYt3XrVjN48GDTpk0bExUVZebMmWNeeeWV016Gbczxy4r/8pe/mJiYGNOqVSsTHh5uRo8e7fH8P//8cxMfH29at25d7f+zvnusyYljpqbF39/fGHP8Muz777/fREREmLZt25rLL7/cZGdnV3vOJy7DfuONN0xGRoYJCwszbdu2NX/84x/Njz/+WG3bX3/9tRk5cqTp2LGjcTqdJjo62owZM8asWbPGPeZsLsM+MXbAgAEmICDABAYGmqFDh5q1a9eetq4lcxhzyvkscI574YUXNG3aNOXm5nr9ZWAAZ47PgIBTrFu3Tv/xH/9B+AANjDMgAIAVnAEBAKwggAAAVhBAAAArCCAAgBVN7ouoVVVV2rdvnwIDA087Uy8AoOkxxujw4cOKjIz0+JL3qZpcAO3bt09dunSx3QYA4Czt3btXnTt3rvX+JvcW3Ml/uwMA0Hyd7vd5gwXQggUL1K1bN7Vp00YJCQkeExTWhbfdAKBlON3v8wYJoLfeektTp07VzJkz9dVXX2nAgAFKTk6ulz+IBgBoIRpigrlLLrnEpKenu29XVlaayMhIk5mZedra4uLiWickZGFhYWFpPktxcXGdv+/r/Qzo6NGj2rx5s8ffV/Hz81NSUpKys7Orja+oqFBJSYnHAgBo+eo9gA4ePKjKyspqEzl26tRJBQUF1cZnZmbK5XK5F66AA4Bzg/Wr4DIyMlRcXOxe9u7da7slAEAjqPfvAYWEhMjf31+FhYUe6wsLCxUeHl5tvNPplNPprO82AABNXL2fAbVu3Vrx8fFas2aNe11VVZXWrFmjgQMH1vfmAADNVIPMhDB16lSlpaXpoosu0iWXXKJ58+aptLRUEyZMaIjNAQCaoQYJoBtvvFEHDhzQjBkzVFBQoAsvvFCrVq3iL0wCANya3F9ELSkpkcvlst0GAOAsFRcXKygoqNb7rV8FBwA4NxFAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYUe8BNGvWLDkcDo8lLi6uvjcDAGjmzmuIB73gggv0ySef/P+NnNcgmwEANGMNkgznnXeewsPDG+KhAQAtRIN8BrRr1y5FRkaqe/fuuummm7Rnz55ax1ZUVKikpMRjAQC0fPUeQAkJCVq8eLFWrVqlhQsXKi8vT4MGDdLhw4drHJ+ZmSmXy+VeunTpUt8tAQCaIIcxxjTkBg4dOqTo6Gg9++yzuv3226vdX1FRoYqKCvftkpISQggAWoDi4mIFBQXVen+DXx3QoUMH9erVSzk5OTXe73Q65XQ6G7oNAEAT0+DfAzpy5Ihyc3MVERHR0JsCADQj9R5ADzzwgLKysrR79259/vnnGjFihPz9/fWnP/2pvjcFAGjG6v0tuJ9++kl/+tOfVFRUpNDQUF1xxRXauHGjQkND63tTAIBmrMEvQvBWSUmJXC6X7TYAAGfpdBchMBccAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjR4H+QDkB1cXFxXtd069bN65rhw4d7XSNJEydO9LrGl3mNHQ6H1zXff/+91zWTJk3yukaSNmzY4FMdzgxnQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALDCYXyZwrYBlZSUyOVy2W4DzVxiYqJPdRkZGV7XhISEeF3jy2zY7dq187rG1x9vX2apbqzZsH3ZzurVq72ukaTU1FSf6nBccXGxgoKCar2fMyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsOI82w3g3BIQEOB1zYgRI7yuWbJkidc1UtOeUHPv3r2Nsh1Jio6O9qnOW77sO1+UlZX5VBcfH+91zebNm33a1rmIMyAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsMJhfJ2tsIGUlJTI5XLZbgNnIC4uzuuad955x+ua3r17e13j6ySXvvw4rFy50uuaJ554wuuaPXv2eF0zcuRIr2skaeHChV7XNOWJXBvzeOjbt6/XNTt27PC6pjkoLi5WUFBQrfdzBgQAsIIAAgBY4XUAbdiwQddee60iIyPlcDiqvf1gjNGMGTMUERGhtm3bKikpSbt27aqvfgEALYTXAVRaWqoBAwZowYIFNd4/d+5cPffcc3rxxRe1adMmBQQEKDk5WeXl5WfdLACg5fD6L6KmpqYqNTW1xvuMMZo3b57++te/6vrrr5d0/C9TdurUSStXrtTYsWPPrlsAQItRr58B5eXlqaCgQElJSe51LpdLCQkJys7OrrGmoqJCJSUlHgsAoOWr1wAqKCiQJHXq1MljfadOndz3nSozM1Mul8u9dOnSpT5bAgA0UdavgsvIyFBxcbF72bt3r+2WAACNoF4DKDw8XJJUWFjosb6wsNB936mcTqeCgoI8FgBAy1evARQTE6Pw8HCtWbPGva6kpESbNm3SwIED63NTAIBmzuur4I4cOaKcnBz37by8PG3ZskXBwcHq2rWrpkyZoscee0w9e/ZUTEyMpk+frsjISA0fPrw++wYANHNeB9CXX36pK6+80n176tSpkqS0tDQtXrxY06ZNU2lpqSZOnKhDhw7piiuu0KpVq9SmTZv66xoA0OwxGSl08803+1T3zDPPeF0TGhrqdY0vh+hXX33ldY0kLV++3OuazMxMn7blrYCAAK9rlixZ4tO2RowY4XXN999/73WNL5OE+jI5rZ+fb582VFVVeV0zevRor2tWrFjhdU1zwGSkAIAmiQACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACuYDbuFiYuL87omKyvLp2117NjR6xpfZj9+/PHHva6ZMWOG1zVNXXx8vNc1mzZt8mlbK1eu9LrGl9mwH3nkEa9rfPmV5ctxJ0nbt2/3uqZfv34+baslYjZsAECTRAABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArzrPdAOrXX/7yF69rQkNDfdqWL5NCzp8/3+ualjixqC/27Nnjdc3dd9/t07bKysq8rnn11Ve9rvF1klBv7d2716e6K6+8sp47wck4AwIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK5iMtIWJi4vzusaXSUV9rVu+fLlP24J04MABr2s2bNjg07a2bdvmdY2vx5G3tm/f7nXNDTfc4NO2Dh486FMdzgxnQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBZORQg6Ho9G25ctkpLfccovXNY05iWRiYqLXNb17926y25Ea75iYP3++1zVPPPGE1zVMKto0cQYEALCCAAIAWOF1AG3YsEHXXnutIiMj5XA4tHLlSo/7x48fL4fD4bGkpKTUV78AgBbC6wAqLS3VgAEDtGDBglrHpKSkKD8/37288cYbZ9UkAKDl8foihNTUVKWmptY5xul0Kjw83OemAAAtX4N8BrR+/XqFhYWpd+/emjRpkoqKimodW1FRoZKSEo8FANDy1XsApaSkaMmSJVqzZo2efPJJZWVlKTU1VZWVlTWOz8zMlMvlci9dunSp75YAAE1QvX8PaOzYse5/9+vXT/3791dsbKzWr1+voUOHVhufkZGhqVOnum+XlJQQQgBwDmjwy7C7d++ukJAQ5eTk1Hi/0+lUUFCQxwIAaPkaPIB++uknFRUVKSIioqE3BQBoRrx+C+7IkSMeZzN5eXnasmWLgoODFRwcrNmzZ2vUqFEKDw9Xbm6upk2bph49eig5ObleGwcANG9eB9CXX36pK6+80n37xOc3aWlpWrhwobZu3apXX31Vhw4dUmRkpIYNG6Y5c+bI6XTWX9cAgGbPYYwxtps4WUlJiVwul+02mq0RI0Z4XbNs2TKftuXLoePLJJeNtZ3G3FZT3o6v2/JlotkbbrjB6xo0H8XFxXV+rs9ccAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCC2bCh0NBQn+oyMjK8rhk0aJDXNXFxcV7XBAQEeF0jNe1ZqhtzNuzRo0d7XbNixQqftoWWi9mwAQBNEgEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsYDJSNHm+TEbarl07n7b16quvel3zu9/9zusaX37sioqKvK554oknvK6RpPnz5/tUB5yMyUgBAE0SAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKw4z3YDwOns2LHD65o5c+b4tC1fJhZ1OBw+bctbzz33nNc1TCqKpowzIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwwmGMMbabOFlJSYlcLpftNtCExMXFeV2zbds2n7bly4+DL5ORPv74417XzJgxw+sawKbi4mIFBQXVej9nQAAAKwggAIAVXgVQZmamLr74YgUGBiosLEzDhw/Xzp07PcaUl5crPT1dHTt2VPv27TVq1CgVFhbWa9MAgObPqwDKyspSenq6Nm7cqNWrV+vYsWMaNmyYSktL3WPuu+8+vf/++1q6dKmysrK0b98+jRw5st4bBwA0b179RdRVq1Z53F68eLHCwsK0efNmJSYmqri4WK+88opef/11XXXVVZKkRYsWqU+fPtq4caMuvfTS+uscANCsndVnQMXFxZKk4OBgSdLmzZt17NgxJSUlucfExcWpa9euys7OrvExKioqVFJS4rEAAFo+nwOoqqpKU6ZM0eWXX66+fftKkgoKCtS6dWt16NDBY2ynTp1UUFBQ4+NkZmbK5XK5ly5duvjaEgCgGfE5gNLT0/Xdd9/pzTffPKsGMjIyVFxc7F727t17Vo8HAGgevPoM6ITJkyfrgw8+0IYNG9S5c2f3+vDwcB09elSHDh3yOAsqLCxUeHh4jY/ldDrldDp9aQMA0Ix5dQZkjNHkyZO1YsUKrV27VjExMR73x8fHq1WrVlqzZo173c6dO7Vnzx4NHDiwfjoGALQIXp0Bpaen6/XXX9e7776rwMBA9+c6LpdLbdu2lcvl0u23366pU6cqODhYQUFBuueeezRw4ECugAMAePAqgBYuXChJGjJkiMf6RYsWafz48ZKkv/3tb/Lz89OoUaNUUVGh5ORkvfDCC/XSLACg5WAyUjSqlJQUr2v+53/+x+saXyYIlXybjHT+/Ple10ydOtXrGqC5YTJSAECTRAABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBU+/UVUQJJGjBjhdc2LL77odU1jTti+fPlyr2ueeOKJBugEaPk4AwIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK5iMFLrooot8qvNlYtGwsDCva6qqqryu+fjjj72ukaRJkyZ5XXPw4EGftgWc6zgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArmIwUeuaZZ3yq69ixo9c1vkwsun37dq9rUlNTva4B0Lg4AwIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAK5iMtIWJi4vzuiYxMdGnbfkysWhZWZnXNTfccIPXNQCaPs6AAABWEEAAACu8CqDMzExdfPHFCgwMVFhYmIYPH66dO3d6jBkyZIgcDofHctddd9Vr0wCA5s+rAMrKylJ6ero2btyo1atX69ixYxo2bJhKS0s9xt15553Kz893L3Pnzq3XpgEAzZ9XFyGsWrXK4/bixYsVFhamzZs3e3yQ3a5dO4WHh9dPhwCAFumsPgMqLi6WJAUHB3usf+211xQSEqK+ffsqIyOjziufKioqVFJS4rEAAFo+ny/Drqqq0pQpU3T55Zerb9++7vXjxo1TdHS0IiMjtXXrVj300EPauXOnli9fXuPjZGZmavbs2b62AQBophzGGONL4aRJk/Thhx/qs88+U+fOnWsdt3btWg0dOlQ5OTmKjY2tdn9FRYUqKirct0tKStSlSxdfWoJ8+x7Q999/79O2Gut7QBdffLHXNTt27PC6BkD9Ki4uVlBQUK33+3QGNHnyZH3wwQfasGFDneEjSQkJCZJUawA5nU45nU5f2gAANGNeBZAxRvfcc49WrFih9evXKyYm5rQ1W7ZskSRFRET41CAAoGXyKoDS09P1+uuv691331VgYKAKCgokSS6XS23btlVubq5ef/11/eEPf1DHjh21detW3XfffUpMTFT//v0b5AkAAJonrwJo4cKFko5/2fRkixYt0vjx49W6dWt98sknmjdvnkpLS9WlSxeNGjVKf/3rX+utYQBAy+D1W3B16dKli7Kyss6qIQDAuYHZsFsYX67+2r59u0/b6t27t9c1vvTHFW1Ay8RkpAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBZORQhdccIHtFgCcgzgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjS5ADLG2G4BAFAPTvf7vMkF0OHDh223AACoB6f7fe4wTeyUo6qqSvv27VNgYKAcDofHfSUlJerSpYv27t2roKAgSx3ax344jv1wHPvhOPbDcU1hPxhjdPjwYUVGRsrPr/bznCb35xj8/PzUuXPnOscEBQWd0wfYCeyH49gPx7EfjmM/HGd7P7hcrtOOaXJvwQEAzg0EEADAimYVQE6nUzNnzpTT6bTdilXsh+PYD8exH45jPxzXnPZDk7sIAQBwbmhWZ0AAgJaDAAIAWEEAAQCsIIAAAFYQQAAAK5pNAC1YsEDdunVTmzZtlJCQoC+++MJ2S41u1qxZcjgcHktcXJztthrchg0bdO211yoyMlIOh0MrV670uN8YoxkzZigiIkJt27ZVUlKSdu3aZafZBnS6/TB+/Phqx0dKSoqdZhtIZmamLr74YgUGBiosLEzDhw/Xzp07PcaUl5crPT1dHTt2VPv27TVq1CgVFhZa6rhhnMl+GDJkSLXj4a677rLUcc2aRQC99dZbmjp1qmbOnKmvvvpKAwYMUHJysvbv32+7tUZ3wQUXKD8/37189tlntltqcKWlpRowYIAWLFhQ4/1z587Vc889pxdffFGbNm1SQECAkpOTVV5e3sidNqzT7QdJSklJ8Tg+3njjjUbssOFlZWUpPT1dGzdu1OrVq3Xs2DENGzZMpaWl7jH33Xef3n//fS1dulRZWVnat2+fRo4cabHr+ncm+0GS7rzzTo/jYe7cuZY6roVpBi655BKTnp7uvl1ZWWkiIyNNZmamxa4a38yZM82AAQNst2GVJLNixQr37aqqKhMeHm6eeuop97pDhw4Zp9Np3njjDQsdNo5T94MxxqSlpZnrr7/eSj+27N+/30gyWVlZxpjj//etWrUyS5cudY/5/vvvjSSTnZ1tq80Gd+p+MMaYwYMHm3vvvddeU2egyZ8BHT16VJs3b1ZSUpJ7nZ+fn5KSkpSdnW2xMzt27dqlyMhIde/eXTfddJP27NljuyWr8vLyVFBQ4HF8uFwuJSQknJPHx/r16xUWFqbevXtr0qRJKioqst1SgyouLpYkBQcHS5I2b96sY8eOeRwPcXFx6tq1a4s+Hk7dDye89tprCgkJUd++fZWRkaGysjIb7dWqyc2GfaqDBw+qsrJSnTp18ljfqVMn7dixw1JXdiQkJGjx4sXq3bu38vPzNXv2bA0aNEjfffedAgMDbbdnRUFBgSTVeHycuO9ckZKSopEjRyomJka5ubl65JFHlJqaquzsbPn7+9tur95VVVVpypQpuvzyy9W3b19Jx4+H1q1bq0OHDh5jW/LxUNN+kKRx48YpOjpakZGR2rp1qx566CHt3LlTy5cvt9itpyYfQPj/UlNT3f/u37+/EhISFB0drbffflu33367xc7QFIwdO9b97379+ql///6KjY3V+vXrNXToUIudNYz09HR9991358TnoHWpbT9MnDjR/e9+/fopIiJCQ4cOVW5urmJjYxu7zRo1+bfgQkJC5O/vX+0qlsLCQoWHh1vqqmno0KGDevXqpZycHNutWHPiGOD4qK579+4KCQlpkcfH5MmT9cEHH2jdunUefz8sPDxcR48e1aFDhzzGt9Tjobb9UJOEhARJalLHQ5MPoNatWys+Pl5r1qxxr6uqqtKaNWs0cOBAi53Zd+TIEeXm5ioiIsJ2K9bExMQoPDzc4/goKSnRpk2bzvnj46efflJRUVGLOj6MMZo8ebJWrFihtWvXKiYmxuP++Ph4tWrVyuN42Llzp/bs2dOijofT7YeabNmyRZKa1vFg+yqIM/Hmm28ap9NpFi9ebLZv324mTpxoOnToYAoKCmy31qjuv/9+s379epOXl2f+9a9/maSkJBMSEmL2799vu7UGdfjwYfP111+br7/+2kgyzz77rPn666/Njz/+aIwx5j//8z9Nhw4dzLvvvmu2bt1qrr/+ehMTE2N+/fVXy53Xr7r2w+HDh80DDzxgsrOzTV5envnkk0/M73//e9OzZ09TXl5uu/V6M2nSJONyucz69etNfn6+eykrK3OPueuuu0zXrl3N2rVrzZdffmkGDhxoBg4caLHr+ne6/ZCTk2MeffRR8+WXX5q8vDzz7rvvmu7du5vExETLnXtqFgFkjDHPP/+86dq1q2ndurW55JJLzMaNG2231OhuvPFGExERYVq3bm2ioqLMjTfeaHJycmy31eDWrVtnJFVb0tLSjDHHL8WePn266dSpk3E6nWbo0KFm586ddptuAHXth7KyMjNs2DATGhpqWrVqZaKjo82dd97Z4l6k1fT8JZlFixa5x/z666/m7rvvNueff75p166dGTFihMnPz7fXdAM43X7Ys2ePSUxMNMHBwcbpdJoePXqYBx980BQXF9tt/BT8PSAAgBVN/jMgAEDLRAABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVvw/x41zS4uRx3AAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo0klEQVR4nO3de3hV1Z3G8fcQ4RBiOCGE3LiGBEG5OYMQEQhQKCEVFEQRK1NQBLFBBQZs02fkUq2xaFtEGZRO5aaCKIKtj+IgEGhLAgMKCJWY0CBBSAhgTkKQi2TNHwxnOCQBTjjJSsL38zzreTh7r3X2LzubvNl7r+zjMMYYAQBQzerZLgAAcGMigAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggOB3s2bNksPh0LFjx/z2nmPHjlWbNm389n51QVpamhwOh9LS0jzLatp+Kq/GqnbgwAE5HA69/PLLfntPG1/HjYAAqmIOh+Oamu0Du1+/furUqZPVGqrSu+++q9GjR6tdu3ZyOBzq16/fdb9nv379vL6HoaGh6t69u958802VlpZef9HV6IUXXtCaNWusbX/x4sVyOBzavn27tRqqUmZmpqZMmaK77rpLDRs2lMPh0IEDB2yXZd1Ntguo65YtW+b1eunSpVq3bl2Z5bfeemt1lnXDWbBggXbs2KHu3bvr+PHjfnvfFi1aKDU1VZJUUFCgpUuXaty4cfr666/14osv+m071+qPf/xjpcLvhRde0P33369hw4b5vygoPT1d8+bN02233aZbb71VO3futF1SjUAAVbHRo0d7vc7IyNC6devKLL/cqVOn1KhRo6os7YaybNkyNW/eXPXq1fPrmZ7L5fL6Xj7++ONq3769XnvtNT333HOqX79+mTGlpaU6e/asGjZs6Lc6Lipve7DvnnvuUWFhoYKDg/Xyyy8TQP+HS3A1wMXLXzt27FBCQoIaNWqkX/3qV5IuXMKbNWtWmTFt2rTR2LFjvZYVFhZq8uTJatmypZxOp+Li4vTb3/7Wb5eDdu/erbFjx6pt27Zq2LChIiMj9eijj1Z4RnHs2DGNHDlSjRs3VtOmTfX000/r9OnTZfq99dZb6tatmwIDAxUaGqpRo0YpNzf3qvUcOXJE+/bt07lz567at2XLlqpXr+oP90aNGunOO+9USUmJCgoKJF34Hk6aNElvv/22OnbsKKfTqbVr10qSvv32Wz366KOKiIiQ0+lUx44d9eabb5Z530OHDmnYsGEKCgpSeHi4pkyZojNnzpTpV949oNLSUr3yyivq3LmzGjZsqGbNmmnw4MGey10Oh0MlJSVasmSJ53LipceWv2usrLNnz2rGjBnq1q2bXC6XgoKC1KdPH23cuLHCMX/4wx/UunVrBQYGqm/fvtqzZ0+ZPvv27dP999+v0NBQNWzYUHfccYf+/Oc/X7WeU6dOad++fdd0rzM0NFTBwcFX7Xej4Qyohjh+/LiSkpI0atQojR49WhERET6NP3XqlPr27atvv/1Wjz/+uFq1aqUtW7YoJSVFR44c0dy5c6+7xnXr1umf//ynHnnkEUVGRmrv3r1auHCh9u7dq4yMDDkcDq/+I0eOVJs2bZSamqqMjAzNmzdP3333nZYuXerp85vf/EbPPvusRo4cqccee0wFBQV69dVXlZCQoC+++EIhISEV1pOSkqIlS5YoJyenRt14/+c//6mAgACv2jds2KCVK1dq0qRJCgsLU5s2bZSfn68777zTE1DNmjXTJ598onHjxqmoqEiTJ0+WJH3//fcaMGCADh48qKeeekrR0dFatmyZNmzYcE31jBs3TosXL1ZSUpIee+wx/fDDD/rrX/+qjIwM3XHHHVq2bJkee+wx9ejRQxMmTJAkxcbGSlK11XgtioqK9F//9V966KGHNH78eBUXF+tPf/qTEhMTtW3bNt1+++1e/ZcuXari4mIlJyfr9OnTeuWVV/SjH/1IX375pef/1969e9WrVy81b95cv/zlLxUUFKSVK1dq2LBhWrVqlYYPH15hPdu2bVP//v01c+bMcn9JxDUwqFbJycnm8t3et29fI8m8/vrrZfpLMjNnziyzvHXr1mbMmDGe188995wJCgoyX3/9tVe/X/7ylyYgIMAcPHjwinX17dvXdOzY8Yp9Tp06VWbZ8uXLjSSzefNmz7KZM2caSeaee+7x6vvzn//cSDK7du0yxhhz4MABExAQYH7zm9949fvyyy/NTTfd5LV8zJgxpnXr1l79xowZYySZnJycK9Z9uY4dO5q+ffv6NKY8ffv2NR06dDAFBQWmoKDAfPXVV+app54ykszQoUM9/SSZevXqmb1793qNHzdunImKijLHjh3zWj5q1Cjjcrk8+3vu3LlGklm5cqWnT0lJiYmLizOSzMaNGz3LL99PGzZsMJLMU089Vab+0tJSz7+DgoK8jqeqrLE8ixYtMpLM//zP/1TY54cffjBnzpzxWvbdd9+ZiIgI8+ijj3qW5eTkGEkmMDDQHDp0yLN869atRpKZMmWKZ9mAAQNM586dzenTpz3LSktLzV133WXatWvnWbZx48YyX8fFZeX9/7ySl156qVLHbV3EJbgawul06pFHHqn0+Pfee099+vRRkyZNdOzYMU8bOHCgzp8/r82bN193jYGBgZ5/nz59WseOHdOdd94pSfr888/L9E9OTvZ6/eSTT0qSPv74Y0nSBx98oNLSUo0cOdKr5sjISLVr1+6Kl1akCzOnjDFWz3727dunZs2aqVmzZrr11lv16quv6u677y5ziapv37667bbbPK+NMVq1apWGDh0qY4zX15+YmCi32+3Zpx9//LGioqJ0//33e8Y3atTIc7ZyJatWrZLD4dDMmTPLrLv8jPVy1VXjtQoICFCDBg0kXbiseOLECf3www+64447yj3+hg0bpubNm3te9+jRQ/Hx8Z7j78SJE9qwYYNGjhyp4uJiz9d2/PhxJSYmKisrS99++22F9fTr10/GGM5+rgOX4GqI5s2be/5zVUZWVpZ2796tZs2albv+6NGjlX7vi06cOKHZs2drxYoVZd7P7XaX6d+uXTuv17GxsapXr55n+mlWVpaMMWX6XVQbbqi3adNGf/zjH+VwONSwYUO1a9dO4eHhZfrFxMR4vS4oKFBhYaEWLlyohQsXlvveF/fxN998o7i4uDKB0b59+6vWt3//fkVHRys0NPRav6Rqr9EXS5Ys0e9+97sy9/4u379S2eNPkm655RatXLlSkpSdnS1jjJ599lk9++yz5W7v6NGjXiEG/yKAaohLzy6uxfnz571el5aW6sc//rGeeeaZcvvfcsstla7topEjR2rLli2aPn26br/9dt18880qLS3V4MGDr2miw+U/nEpLS+VwOPTJJ58oICCgTP+bb775umuuakFBQRo4cOBV+13+/b24v0aPHq0xY8aUO6ZLly7XX+B1qGk1vvXWWxo7dqyGDRum6dOnKzw8XAEBAUpNTdX+/ft9fr+LX9+0adOUmJhYbp+4uLjrqhlXRgDVcE2aNFFhYaHXsrNnz+rIkSNey2JjY3Xy5Mlr+mFYGd99953Wr1+v2bNna8aMGZ7lWVlZFY7Jysry+s00OztbpaWlnktmsbGxMsYoJibGLwFZmzRr1kzBwcE6f/78Vb9nrVu31p49e2SM8QrxzMzMq24nNjZWn376qU6cOHHFs6DyLsdVV43X6v3331fbtm31wQcfeG2jvMuLUvnH5tdff+05/tq2bSvpwpl2Vf2/wZVxD6iGi42NLXP/ZuHChWXOgEaOHKn09HR9+umnZd6jsLBQP/zww3XVcfEMxRjjtfxKs+vmz5/v9frVV1+VJCUlJUmS7rvvPgUEBGj27Nll3tcYc9U/GPVlGnZNExAQoBEjRmjVqlXlTg2+OIVbkn7yk5/o8OHDev/99z3LTp06VeFlsUuNGDFCxhjNnj27zLpL93lQUFCZX3Sqq8ZrVd4xuHXrVqWnp5fbf82aNV73cLZt26atW7d6jr/w8HD169dPb7zxRplf6CTvr688vkzDRvk4A6rhHnvsMU2cOFEjRozQj3/8Y+3atUuffvqpwsLCvPpNnz5df/7znzVkyBCNHTtW3bp1U0lJib788ku9//77OnDgQJkxlysoKNDzzz9fZnlMTIwefvhhJSQkaM6cOTp37pyaN2+u//7v/1ZOTk6F75eTk6N77rlHgwcPVnp6ut566y399Kc/VdeuXSVdCNfnn39eKSkpOnDggIYNG6bg4GDl5ORo9erVmjBhgqZNm1bh+/syDXvz5s2eIC8oKFBJSYnna01ISFBCQoKnr8PhUN++fav88UgvvviiNm7cqPj4eI0fP1633XabTpw4oc8//1yfffaZTpw4IUkaP368XnvtNf3sZz/Tjh07FBUVpWXLll3THyr3799f//Zv/6Z58+YpKyvLc7n0r3/9q/r3769JkyZJkrp166bPPvtMv//97xUdHa2YmBjFx8dXS42XevPNNz1/I3Wpp59+WkOGDNEHH3yg4cOH6+6771ZOTo5ef/113XbbbTp58mSZMXFxcerdu7eeeOIJnTlzRnPnzlXTpk29LlPPnz9fvXv3VufOnTV+/Hi1bdtW+fn5Sk9P16FDh7Rr164Ka/VlGrbb7fb8Avb3v/9dkvTaa68pJCREISEhnu/DDafa593d4Cqahl3RFOjz58+bX/ziFyYsLMw0atTIJCYmmuzs7DLTsI0xpri42KSkpJi4uDjToEEDExYWZu666y7z8ssvm7Nnz16xrotTwctrAwYMMMYYc+jQITN8+HATEhJiXC6XeeCBB8zhw4fLTEW9OA37H//4h7n//vtNcHCwadKkiZk0aZL5/vvvy2x71apVpnfv3iYoKMgEBQWZDh06mOTkZJOZmenpc73TsC/WVF67tPbi4mIjyYwaNeqq73ktU9eNuTANOzk5udx1+fn5Jjk52bRs2dLUr1/fREZGmgEDBpiFCxd69fvmm2/MPffcYxo1amTCwsLM008/bdauXXvVadjGXJi+/NJLL5kOHTqYBg0amGbNmpmkpCSzY8cOT599+/aZhIQEExgYaCR5HVv+rrE8F6dhV9Ryc3NNaWmpeeGFF0zr1q2N0+k0//Iv/2I++uijMl/zxWnYL730kvnd735nWrZsaZxOp+nTp4/nTwAutX//fvOzn/3MREZGmvr165vmzZubIUOGmPfff9/T53qnYV+sqbx2+ffrRuIw5rJrH8AN7OOPP9aQIUO0a9cude7c2XY5QJ3GPSDgEhs3btSoUaMIH6AacAYEALCCMyAAgBUEEADACgIIAGAFAQQAsKLG/SFqaWmpDh8+rODg4Ks+rRcAUPMYY1RcXKzo6OgrfhBkjQugw4cPq2XLlrbLAABcp9zcXLVo0aLC9TXuEhwfWwsAdcPVfp5XWQDNnz9fbdq0UcOGDRUfH69t27Zd0zguuwFA3XC1n+dVEkDvvvuupk6dqpkzZ+rzzz9X165dlZiY6JcPRQMA1BFV8YC5Hj16eD188fz58yY6OtqkpqZedazb7b7iQwlpNBqNVjua2+2+4s97v58BnT17Vjt27PD6gKd69epp4MCB5X5ux5kzZ1RUVOTVAAB1n98D6NixYzp//rwiIiK8lkdERCgvL69M/9TUVLlcLk9jBhwA3Bisz4JLSUmR2+32tNzcXNslAQCqgd//DigsLEwBAQHKz8/3Wp6fn6/IyMgy/Z1Op5xOp7/LAADUcH4/A2rQoIG6deum9evXe5aVlpZq/fr16tmzp783BwCoparkSQhTp07VmDFjdMcdd6hHjx6aO3euSkpK9Mgjj1TF5gAAtVCVBNCDDz6ogoICzZgxQ3l5ebr99tu1du3aMhMTAAA3rhr3iahFRUVyuVy2ywAAXCe3263GjRtXuN76LDgAwI2JAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwIqbbBcA4Ma1YsUKn8d8+umnPo9ZtGiRz2NQ9TgDAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAAreBgpAL+YNm2az2NGjhzp85iAgACfx/Aw0pqJMyAAgBUEEADACr8H0KxZs+RwOLxahw4d/L0ZAEAtVyX3gDp27KjPPvvs/zdyE7eaAADeqiQZbrrpJkVGRlbFWwMA6ogquQeUlZWl6OhotW3bVg8//LAOHjxYYd8zZ86oqKjIqwEA6j6/B1B8fLwWL16stWvXasGCBcrJyVGfPn1UXFxcbv/U1FS5XC5Pa9mypb9LAgDUQH4PoKSkJD3wwAPq0qWLEhMT9fHHH6uwsFArV64st39KSorcbren5ebm+rskAEANVOWzA0JCQnTLLbcoOzu73PVOp1NOp7OqywAA1DBV/ndAJ0+e1P79+xUVFVXVmwIA1CJ+D6Bp06Zp06ZNOnDggLZs2aLhw4crICBADz30kL83BQCoxfx+Ce7QoUN66KGHdPz4cTVr1ky9e/dWRkaGmjVr5u9NAQBqMb8H0IoVK/z9lgBqgcDAwGrZzldffVUt20HV41lwAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGBFlX8gHYDaJy4uzucxjz76aBVUUtbixYurZTuoepwBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAqehg3UYU2bNq3UuE8++cTnMa1bt/Z5TFFRkc9jzp075/MY1EycAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFTyMFKjDmjRpUqlxsbGxfq6kfA888IDPY3Jzc6ugEtjAGRAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWMHDSIE67Ne//nW1bSstLc3nMZs3b/Z/Iag1OAMCAFhBAAEArPA5gDZv3qyhQ4cqOjpaDodDa9as8VpvjNGMGTMUFRWlwMBADRw4UFlZWf6qFwBQR/gcQCUlJeratavmz59f7vo5c+Zo3rx5ev3117V161YFBQUpMTFRp0+fvu5iAQB1h8+TEJKSkpSUlFTuOmOM5s6dq//4j//QvffeK0launSpIiIitGbNGo0aNer6qgUA1Bl+vQeUk5OjvLw8DRw40LPM5XIpPj5e6enp5Y45c+aMioqKvBoAoO7zawDl5eVJkiIiIryWR0REeNZdLjU1VS6Xy9Natmzpz5IAADWU9VlwKSkpcrvdnpabm2u7JABANfBrAEVGRkqS8vPzvZbn5+d71l3O6XSqcePGXg0AUPf5NYBiYmIUGRmp9evXe5YVFRVp69at6tmzpz83BQCo5XyeBXfy5EllZ2d7Xufk5Gjnzp0KDQ1Vq1atNHnyZD3//PNq166dYmJi9Oyzzyo6OlrDhg3zZ90AgFrO5wDavn27+vfv73k9depUSdKYMWO0ePFiPfPMMyopKdGECRNUWFio3r17a+3atWrYsKH/qgYA1HoOY4yxXcSlioqK5HK5bJcB1DiTJk3yecwrr7xSqW05HA6fxzz//PM+j5kxY4bPY1B7uN3uK97Xtz4LDgBwYyKAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKnz+OAcD1i4qK8nnM448/7vOYyjzVWpK2bt3q85iXX365UtvCjYszIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgoeRAtepMg8WXblypc9jOnbs6POYv/3tbz6PkaQRI0b4PKaoqKhS28KNizMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCh5EC12n06NE+j+nVq1cVVFLWggULKjWuoKDAz5UAZXEGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABW8DBS4BKjRo3yecysWbN8HuNwOHwes2vXLp/HbNmyxecxQHXhDAgAYAUBBACwwucA2rx5s4YOHaro6Gg5HA6tWbPGa/3YsWPlcDi82uDBg/1VLwCgjvA5gEpKStS1a1fNnz+/wj6DBw/WkSNHPG358uXXVSQAoO7xeRJCUlKSkpKSrtjH6XQqMjKy0kUBAOq+KrkHlJaWpvDwcLVv315PPPGEjh8/XmHfM2fOqKioyKsBAOo+vwfQ4MGDtXTpUq1fv16//e1vtWnTJiUlJen8+fPl9k9NTZXL5fK0li1b+rskAEAN5Pe/A7r07yg6d+6sLl26KDY2VmlpaRowYECZ/ikpKZo6darndVFRESEEADeAKp+G3bZtW4WFhSk7O7vc9U6nU40bN/ZqAIC6r8oD6NChQzp+/LiioqKqelMAgFrE50twJ0+e9DqbycnJ0c6dOxUaGqrQ0FDNnj1bI0aMUGRkpPbv369nnnlGcXFxSkxM9GvhAIDazecA2r59u/r37+95ffH+zZgxY7RgwQLt3r1bS5YsUWFhoaKjozVo0CA999xzcjqd/qsaAFDrOYwxxnYRlyoqKpLL5bJdBmq5m26q3PyakpISn8fUr1/f5zF79+71eczdd9/t85iDBw/6PAbwF7fbfcX7+jwLDgBgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFb4/SO5AX+rzEd5rF27tlLbqsyTrffs2ePzmMp8PtaRI0d8HgPUZJwBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVPIwUNd6cOXN8HtO3b98qqKR8u3bt8nkMDxYFOAMCAFhCAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACt4GCmq1ZAhQ3weM3bsWP8XUoHs7Gyfx8yePbsKKgHqPs6AAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKHkaKSuvUqZPPY5YsWeLzmODgYJ/HVNb8+fN9HlOZB5gC4AwIAGAJAQQAsMKnAEpNTVX37t0VHBys8PBwDRs2TJmZmV59Tp8+reTkZDVt2lQ333yzRowYofz8fL8WDQCo/XwKoE2bNik5OVkZGRlat26dzp07p0GDBqmkpMTTZ8qUKfrLX/6i9957T5s2bdLhw4d13333+b1wAEDt5tMkhLVr13q9Xrx4scLDw7Vjxw4lJCTI7XbrT3/6k9555x396Ec/kiQtWrRIt956qzIyMnTnnXf6r3IAQK12XfeA3G63JCk0NFSStGPHDp07d04DBw709OnQoYNatWql9PT0ct/jzJkzKioq8moAgLqv0gFUWlqqyZMnq1evXp7puHl5eWrQoIFCQkK8+kZERCgvL6/c90lNTZXL5fK0li1bVrYkAEAtUukASk5O1p49e7RixYrrKiAlJUVut9vTcnNzr+v9AAC1Q6X+EHXSpEn66KOPtHnzZrVo0cKzPDIyUmfPnlVhYaHXWVB+fr4iIyPLfS+n0ymn01mZMgAAtZhPZ0DGGE2aNEmrV6/Whg0bFBMT47W+W7duql+/vtavX+9ZlpmZqYMHD6pnz57+qRgAUCf4dAaUnJysd955Rx9++KGCg4M993VcLpcCAwPlcrk0btw4TZ06VaGhoWrcuLGefPJJ9ezZkxlwAAAvPgXQggULJEn9+vXzWr5o0SKNHTtWkvSHP/xB9erV04gRI3TmzBklJibqP//zP/1SLACg7nAYY4ztIi5VVFQkl8tluwxcg8qc1W7ZssXnMRXNoLyS5cuX+zxGkqZPn+7zmNLS0kptC6jr3G63GjduXOF6ngUHALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKyr1iahAdZo9e7bPY954440qqASAP3EGBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABW8DBSVKulS5f6PCYjI6MKKgFgG2dAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGCFwxhjbBdxqaKiIrlcLttlAACuk9vtVuPGjStczxkQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACt8CqDU1FR1795dwcHBCg8P17Bhw5SZmenVp1+/fnI4HF5t4sSJfi0aAFD7+RRAmzZtUnJysjIyMrRu3TqdO3dOgwYNUklJiVe/8ePH68iRI542Z84cvxYNAKj9bvKl89q1a71eL168WOHh4dqxY4cSEhI8yxs1aqTIyEj/VAgAqJOu6x6Q2+2WJIWGhnotf/vttxUWFqZOnTopJSVFp06dqvA9zpw5o6KiIq8GALgBmEo6f/68ufvuu02vXr28lr/xxhtm7dq1Zvfu3eatt94yzZs3N8OHD6/wfWbOnGkk0Wg0Gq2ONbfbfcUcqXQATZw40bRu3drk5uZesd/69euNJJOdnV3u+tOnTxu32+1pubm51ncajUaj0a6/XS2AfLoHdNGkSZP00UcfafPmzWrRosUV+8bHx0uSsrOzFRsbW2a90+mU0+msTBkAgFrMpwAyxujJJ5/U6tWrlZaWppiYmKuO2blzpyQpKiqqUgUCAOomnwIoOTlZ77zzjj788EMFBwcrLy9PkuRyuRQYGKj9+/frnXfe0U9+8hM1bdpUu3fv1pQpU5SQkKAuXbpUyRcAAKilfLnvowqu8y1atMgYY8zBgwdNQkKCCQ0NNU6n08TFxZnp06df9Trgpdxut/XrljQajUa7/na1n/2O/wuWGqOoqEgul8t2GQCA6+R2u9W4ceMK1/MsOACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFTUugIwxtksAAPjB1X6e17gAKi4utl0CAMAPrvbz3GFq2ClHaWmpDh8+rODgYDkcDq91RUVFatmypXJzc9W4cWNLFdrHfriA/XAB++EC9sMFNWE/GGNUXFys6Oho1atX8XnOTdVY0zWpV6+eWrRoccU+jRs3vqEPsIvYDxewHy5gP1zAfrjA9n5wuVxX7VPjLsEBAG4MBBAAwIpaFUBOp1MzZ86U0+m0XYpV7IcL2A8XsB8uYD9cUJv2Q42bhAAAuDHUqjMgAEDdQQABAKwggAAAVhBAAAArCCAAgBW1JoDmz5+vNm3aqGHDhoqPj9e2bdtsl1TtZs2aJYfD4dU6dOhgu6wqt3nzZg0dOlTR0dFyOBxas2aN13pjjGbMmKGoqCgFBgZq4MCBysrKslNsFbrafhg7dmyZ42Pw4MF2iq0iqamp6t69u4KDgxUeHq5hw4YpMzPTq8/p06eVnJyspk2b6uabb9aIESOUn59vqeKqcS37oV+/fmWOh4kTJ1qquHy1IoDeffddTZ06VTNnztTnn3+url27KjExUUePHrVdWrXr2LGjjhw54ml/+9vfbJdU5UpKStS1a1fNnz+/3PVz5szRvHnz9Prrr2vr1q0KCgpSYmKiTp8+Xc2VVq2r7QdJGjx4sNfxsXz58mqssOpt2rRJycnJysjI0Lp163Tu3DkNGjRIJSUlnj5TpkzRX/7yF7333nvatGmTDh8+rPvuu89i1f53LftBksaPH+91PMyZM8dSxRUwtUCPHj1McnKy5/X58+dNdHS0SU1NtVhV9Zs5c6bp2rWr7TKskmRWr17teV1aWmoiIyPNSy+95FlWWFhonE6nWb58uYUKq8fl+8EYY8aMGWPuvfdeK/XYcvToUSPJbNq0yRhz4Xtfv359895773n6fPXVV0aSSU9Pt1Vmlbt8PxhjTN++fc3TTz9tr6hrUOPPgM6ePasdO3Zo4MCBnmX16tXTwIEDlZ6ebrEyO7KyshQdHa22bdvq4Ycf1sGDB22XZFVOTo7y8vK8jg+Xy6X4+Pgb8vhIS0tTeHi42rdvryeeeELHjx+3XVKVcrvdkqTQ0FBJ0o4dO3Tu3Dmv46FDhw5q1apVnT4eLt8PF7399tsKCwtTp06dlJKSolOnTtkor0I17mnYlzt27JjOnz+viIgIr+URERHat2+fparsiI+P1+LFi9W+fXsdOXJEs2fPVp8+fbRnzx4FBwfbLs+KvLw8SSr3+Li47kYxePBg3XfffYqJidH+/fv1q1/9SklJSUpPT1dAQIDt8vyutLRUkydPVq9evdSpUydJF46HBg0aKCQkxKtvXT4eytsPkvTTn/5UrVu3VnR0tHbv3q1f/OIXyszM1AcffGCxWm81PoDw/5KSkjz/7tKli+Lj49W6dWutXLlS48aNs1gZaoJRo0Z5/t25c2d16dJFsbGxSktL04ABAyxWVjWSk5O1Z8+eG+I+6JVUtB8mTJjg+Xfnzp0VFRWlAQMGaP/+/YqNja3uMstV4y/BhYWFKSAgoMwslvz8fEVGRlqqqmYICQnRLbfcouzsbNulWHPxGOD4KKtt27YKCwurk8fHpEmT9NFHH2njxo1enx8WGRmps2fPqrCw0Kt/XT0eKtoP5YmPj5ekGnU81PgAatCggbp166b169d7lpWWlmr9+vXq2bOnxcrsO3nypPbv36+oqCjbpVgTExOjyMhIr+OjqKhIW7duveGPj0OHDun48eN16vgwxmjSpElavXq1NmzYoJiYGK/13bp1U/369b2Oh8zMTB08eLBOHQ9X2w/l2blzpyTVrOPB9iyIa7FixQrjdDrN4sWLzT/+8Q8zYcIEExISYvLy8myXVq3+/d//3aSlpZmcnBzz97//3QwcONCEhYWZo0eP2i6tShUXF5svvvjCfPHFF0aS+f3vf2+++OIL88033xhjjHnxxRdNSEiI+fDDD83u3bvNvffea2JiYsz3339vuXL/utJ+KC4uNtOmTTPp6ekmJyfHfPbZZ+Zf//VfTbt27czp06dtl+43TzzxhHG5XCYtLc0cOXLE006dOuXpM3HiRNOqVSuzYcMGs337dtOzZ0/Ts2dPi1X739X2Q3Z2tvn1r39ttm/fbnJycsyHH35o2rZtaxISEixX7q1WBJAxxrz66qumVatWpkGDBqZHjx4mIyPDdknV7sEHHzRRUVGmQYMGpnnz5ubBBx802dnZtsuqchs3bjSSyrQxY8YYYy5MxX722WdNRESEcTqdZsCAASYzM9Nu0VXgSvvh1KlTZtCgQaZZs2amfv36pnXr1mb8+PF17pe08r5+SWbRokWePt9//735+c9/bpo0aWIaNWpkhg8fbo4cOWKv6Cpwtf1w8OBBk5CQYEJDQ43T6TRxcXFm+vTpxu122y38MnweEADAihp/DwgAUDcRQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAV/wtgsOvNxE501wAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr8klEQVR4nO3de1hVdb7H8c8GdXuDbQjIRUXE68lLT0yR5a2RBGa6eCFzbAqtdDLsZFQWnTE1KybrOE6NWT6no9l0taTbOWOZF7QJbbLMytEjhGkJiEyCYqDB7/zB4562ILi3wA/w/Xqe9TzutX7ftb57seSz195rLxzGGCMAAJqYn+0GAADnJwIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIjWL+/PlyOBw6fPhwg61z6tSp6tWrV4OtrzVYuXKlHA6H9u3b5543evRojR492lpPp6utx8a2adMmORwOvfHGGw22ThvPo7UjgJqAw+E4q2nTpk1W+xw9erQGDRpktYfGdOzYMc2ePVvdu3eX0+nUwIEDtWzZsnNaZ69evTx+hqGhoRoxYoQyMzMbqOumcfz4cc2fP9/qMdgYL1qamz//+c8aOHCgnE6nIiMjlZaWprKyMtttWdPGdgPngxdffNHj8apVq7Ru3boa8wcOHNiUbZ1XKisrlZCQoE8//VSpqanq27ev3n//fd1xxx364Ycf9OCDD/q87osuukj33HOPJOngwYN67rnnNGHCBC1btky33357Qz2Fs/bBBx94XXP8+HEtWLBAkprV2VNrcv/992vRokVKTk7WXXfdpV27dunpp5/W119/rffff992e1YQQE3gt7/9rcfjrVu3at26dTXmn+748ePq2LFjY7Z23lizZo0+/vhjPf/887rlllskSTNnzlRycrIWLlyo2267TaGhoT6tOzIy0uNnefPNN6tPnz764x//eMYA+umnn1RVVaV27dr5tM26NMY6cW7y8/O1ePFi3XTTTVq1apV7fr9+/XTnnXfq3Xff1TXXXGOxQzt4C66ZOPX21/bt2zVy5Eh17NjR/arc4XBo/vz5NWp69eqlqVOnesw7cuSIZs+erR49esjpdKpPnz56/PHHVVVV1SB97ty5U1OnTlXv3r3Vvn17hYWF6ZZbblFxcXGt4w8fPqxJkyYpMDBQXbt21V133aXy8vIa4/7yl78oNjZWHTp0UFBQkCZPnqwDBw7U209+fr52796tkydP1jluy5YtkqTJkyd7zJ88ebLKy8v19ttv17utsxUWFqaBAwcqLy9PkrRv3z45HA49+eSTWrJkiWJiYuR0OrVr1y5J0u7du5WcnKygoCC1b99ev/jFL/TOO+/UWO/XX3+tX/7yl+rQoYO6d++uRx55pNafa22fAZWXl2v+/Pnq16+f2rdvr/DwcE2YMEG5ubnat2+fQkJCJEkLFixwv53482OuoXv01T//+U/de++9Gjx4sDp37qzAwEAlJSXpiy++qHV8ZWWlHnzwQYWFhalTp0669tpraz2utm3bpsTERLlcLnXs2FGjRo3S3/72t3r7KSkp0e7du1VSUlLnuOzsbP3000+1Hn+S9Oqrr9a7rdaIM6BmpLi4WElJSZo8ebJ++9vfqlu3bl7VHz9+XKNGjdL333+v3/3ud+rZs6c+/vhjpaenKz8/X0uWLDnnHtetW6dvvvlG06ZNU1hYmL7++mstX75cX3/9tbZu3SqHw+ExftKkSerVq5cyMjK0detWPfXUU/rhhx88XgU++uijmjt3riZNmqTbbrtNRUVFevrppzVy5Eh9/vnn6tKlyxn7SU9P1wsvvKC8vLw6L1CoqKiQv79/jbODU2eY27dv1/Tp073fIbU4efKkDhw4oK5du3rMX7FihcrLyzVjxgw5nU4FBQXp66+/1hVXXKHIyEg98MAD6tSpk15//XWNGzdOb775psaPHy9JKigo0JVXXqmffvrJPW758uXq0KFDvf1UVlbq6quv1vr16zV58mTdddddOnr0qNatW6evvvpK8fHxWrZsmWbOnKnx48drwoQJkqQhQ4ZIUpP0eLa++eYbvfXWW7r++usVHR2twsJCPffccxo1apR27dqliIgIj/GPPvqoHA6H7r//fh06dEhLlixRfHy8duzY4e5rw4YNSkpKUmxsrObNmyc/Pz+tWLFCv/zlL7VlyxZdeumlZ+wnMzNT06ZN04oVK2q8GPy5iooKSaqxL35+/J2XDJpcamqqOX3Xjxo1ykgyzz77bI3xksy8efNqzI+KijIpKSnuxwsXLjSdOnUy//d//+cx7oEHHjD+/v5m//79dfY1atQoc+GFF9Y55vjx4zXmvfLKK0aS2bx5s3vevHnzjCRz7bXXeoy94447jCTzxRdfGGOM2bdvn/H39zePPvqox7gvv/zStGnTxmN+SkqKiYqK8hiXkpJiJJm8vLw6+/7P//xPI8ls2bLFY/4DDzxgJJmrr766zvoziYqKMmPHjjVFRUWmqKjIfPHFF2by5MlGkrnzzjuNMcbk5eUZSSYwMNAcOnTIo37MmDFm8ODBpry83D2vqqrKXH755aZv377uebNnzzaSzLZt29zzDh06ZFwuV43nP2rUKDNq1Cj34//+7/82kszixYtr9F9VVWWMMaaoqOiMx1lj9FibU8dMUVHRGceUl5ebyspKj3l5eXnG6XSahx9+2D1v48aNRpKJjIw0paWl7vmvv/66kWT+9Kc/uZ9H3759TUJCgntfGFN9nEdHR5urrrrKPW/FihU1nsepeStWrKjzuW3fvt1IMgsXLvSYv3btWiPJdO7cuc761oq34JoRp9OpadOm+Vy/evVqjRgxQhdccIEOHz7snuLj41VZWanNmzefc48/fwVXXl6uw4cP67LLLpMkffbZZzXGp6amejy+8847JUn/+7//K6n6s5mqqipNmjTJo+ewsDD17dtXGzdurLOflStXyhhT7+XZU6ZMkcvl0i233KJ169Zp3759Wr58uZ555hlJ0o8//lj3E6/DBx98oJCQEIWEhGjo0KFavXq1brrpJj3++OMe4yZOnOh+q0uqfjtpw4YNmjRpko4ePep+7sXFxUpISNDevXv1/fffS6reX5dddpnHq/GQkBDdeOON9fb35ptvKjg42L3vf+70M9bTNVWPZ8vpdMrPr/rXVmVlpYqLi9W5c2f179+/1uPv5ptvVkBAgPtxcnKywsPD3cffjh07tHfvXk2ZMkXFxcXu51dWVqYxY8Zo8+bNdb6FOHXqVBlj6jz7kaSLL75YcXFxevzxx7VixQrt27dPf/3rX/W73/1Obdu2PafjryXjLbhmJDIy8pw+QN67d6927tzp8Uvu5w4dOuTzuk/55z//qQULFujVV1+tsb7a3gfv27evx+OYmBj5+fm5v0uxd+9eGWNqjDulbdu259yzVP25zDvvvKObbrpJY8eOlSQFBgbq6aefVkpKijp37uzzuuPi4vTII4/I4XCoY8eOGjhwYK1vG0ZHR3s8zsnJkTFGc+fO1dy5c2td96FDhxQZGalvv/1WcXFxNZb379+/3v5yc3PVv39/tWnj/X/3purxbFVVVelPf/qTnnnmGeXl5amystK97PS3PKWax5/D4VCfPn08jj9JSklJOeM2S0pKdMEFF5xz72+++aZuuOEG90Uw/v7+SktLU1ZWlvbs2XPO62+JCKBmxNv3yn/+n0+q/s951VVXac6cObWO79evn8+9nTJp0iR9/PHHuu+++3TRRRepc+fOqqqqUmJi4ll92Hz6K+6qqio5HA799a9/lb+/f43x5xIMpxs5cqS++eYbffnllyorK9PQoUN18OBBSee2b4KDgxUfH1/vuNN/vqf217333quEhIRaa/r06eNzXw2hufX42GOPae7cubrlllu0cOFCBQUFyc/PT7Nnz/bpYodTNU888YQuuuiiWsc01DEYGRmpjz76SHv37lVBQYH69u2rsLAwRURENMj/zZaIAGoBLrjgAh05csRj3okTJ5Sfn+8xLyYmRseOHTurX4a++OGHH7R+/XotWLBADz30kHv+qVeRtdm7d6/HK/+cnBxVVVW53zKLiYmRMUbR0dFN8p/Q39/f4xfNhx9+KEmNts/q0rt3b0nVZ3n1bT8qKqrW/Xw2r5xjYmK0bds2nTx58oxnlGd6K66pejxbb7zxhq688ko9//zzHvOPHDmi4ODgGuNP78cYo5ycHPcFFjExMZKqz4ab6hjo27ev+8xs165dys/Pr/ctvNaKz4BagJiYmBqf3yxfvrzGGdCkSZOUnZ1d65fajhw5op9++umc+jh1hmKM8Zhf19V1S5cu9Xj89NNPS5KSkpIkSRMmTJC/v78WLFhQY73GmDNe3n3K2V6GXZuioiI9/vjjGjJkiJUACg0N1ejRo/Xcc8/VeDFxqr9TfvWrX2nr1q365JNPPJa/9NJL9W5n4sSJOnz4sP785z/XWHZqn5+6Guv0FzpN1ePZ8vf3r3GcrF692v051OlWrVqlo0ePuh+/8cYbys/Pdx9/sbGxiomJ0ZNPPqljx47VqP/586vN2V6GXZuqqirNmTNHHTt2tPKF5eaAM6AW4LbbbtPtt9+uiRMn6qqrrtIXX3yh999/v8Yrvvvuu0/vvPOOrr76ak2dOlWxsbEqKyvTl19+qTfeeEP79u2r9VXizxUVFemRRx6pMT86Olo33nijRo4cqUWLFunkyZOKjIzUBx984P6+S23y8vJ07bXXKjExUdnZ2frLX/6iKVOmaOjQoZKqw/WRRx5Renq69u3bp3HjxikgIEB5eXnKzMzUjBkzdO+9955x/Wd7GbYkjRo1SsOGDVOfPn1UUFCg5cuX69ixY3rvvffcH2xL1d/biY6OVkpKilauXFnnOs/V0qVLNXz4cA0ePFjTp09X7969VVhYqOzsbH333Xfu77fMmTNHL774ohITE3XXXXe5L3GOiorSzp0769zGzTffrFWrViktLU2ffPKJRowYobKyMn344Ye64447dN1116lDhw76t3/7N7322mvq16+fgoKCNGjQIA0aNKhJevy5xYsX1/gCtp+fnx588EFdffXVevjhhzVt2jRdfvnl+vLLL/XSSy+5z9ROFxQUpOHDh2vatGkqLCzUkiVL1KdPH/cl935+fvqv//ovJSUl6cILL9S0adMUGRmp77//Xhs3blRgYKDefffdM/Z6tpdhS3J/B+6iiy7SyZMn9fLLL+uTTz7RCy+8oJ49e571/mlV7Fx8d34702XYZ7oEurKy0tx///0mODjYdOzY0SQkJJicnJwal2EbY8zRo0dNenq66dOnj2nXrp0JDg42l19+uXnyySfNiRMn6uzr1KXgtU1jxowxxhjz3XffmfHjx5suXboYl8tlrr/+enPw4MEal/CeuqR2165dJjk52QQEBJgLLrjAzJo1y/z44481tv3mm2+a4cOHm06dOplOnTqZAQMGmNTUVLNnzx73mHO5DNsYY+6++27Tu3dv43Q6TUhIiJkyZYrJzc2tMe7LL780kswDDzxQ7zqjoqLMr3/96zrHnLoM+4knnqh1eW5urrn55ptNWFiYadu2rYmMjDRXX321eeONNzzG7dy504waNcq0b9/eREZGmoULF5rnn3++3suwjam+rPg//uM/THR0tGnbtq0JCwszycnJHs//448/NrGxsaZdu3Y1fp4N3WNtTh0ztU3+/v7GmOrLsO+55x4THh5uOnToYK644gqTnZ1d4zmfugz7lVdeMenp6SY0NNR06NDB/PrXvzbffvttjW1//vnnZsKECaZr167G6XSaqKgoM2nSJLN+/Xr3mHO5DPvU2KFDh5pOnTqZgIAAM2bMGLNhw4Z661ozhzGnnc8C57lnnnlGc+bMUW5urtdfBgZw9vgMCDjNxo0b9e///u+ED9DIOAMCAFjBGRAAwAoCCABgBQEEALCCAAIAWNHsvohaVVWlgwcPKiAgoN479QIAmh9jjI4ePaqIiAiPL3mfrtkF0MGDB9WjRw/bbQAAztGBAwfUvXv3My5vdm/B/fxvdwAAWq76fp83WgAtXbpUvXr1Uvv27RUXF+dxg8K68LYbALQO9f0+b5QAeu2115SWlqZ58+bps88+09ChQ5WQkNAgfxANANBKNMYN5i699FKTmprqflxZWWkiIiJMRkZGvbUlJSVnvCEhExMTE1PLmUpKSur8fd/gZ0AnTpzQ9u3bPf6+ip+fn+Lj45WdnV1jfEVFhUpLSz0mAEDr1+ABdPjwYVVWVta4kWO3bt1UUFBQY3xGRoZcLpd74go4ADg/WL8KLj09XSUlJe7pwIEDtlsCADSBBv8eUHBwsPz9/VVYWOgxv7CwUGFhYTXGO51OOZ3Ohm4DANDMNfgZULt27RQbG6v169e751VVVWn9+vUaNmxYQ28OANBCNcqdENLS0pSSkqJf/OIXuvTSS7VkyRKVlZVp2rRpjbE5AEAL1CgBdMMNN6ioqEgPPfSQCgoKdNFFF2nt2rX8hUkAgFuz+4uopaWlcrlcttsAAJyjkpISBQYGnnG59avgAADnJwIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArGjyA5s+fL4fD4TENGDCgoTcDAGjh2jTGSi+88EJ9+OGH/9pIm0bZDACgBWuUZGjTpo3CwsIaY9UAgFaiUT4D2rt3ryIiItS7d2/deOON2r9//xnHVlRUqLS01GMCALR+DR5AcXFxWrlypdauXatly5YpLy9PI0aM0NGjR2sdn5GRIZfL5Z569OjR0C0BAJohhzHGNOYGjhw5oqioKC1evFi33nprjeUVFRWqqKhwPy4tLSWEAKAVKCkpUWBg4BmXN/rVAV26dFG/fv2Uk5NT63Kn0ymn09nYbQAAmplG/x7QsWPHlJubq/Dw8MbeFACgBWnwALr33nuVlZWlffv26eOPP9b48ePl7++v3/zmNw29KQBAC9bgb8F99913+s1vfqPi4mKFhIRo+PDh2rp1q0JCQhp6UwCAFqzRL0LwVmlpqVwul+020Ix06tTJ65rx48f7tK3hw4d7XTNw4ECva0aMGOF1jS//VR0Oh9c1kvToo496XTN37lyftoXWq76LELgXHADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBY0eh/kA74uQEDBnhd48uNMa+77jqvayTfbt7py01CfalZs2aN1zW+3ow0PT3d65rPPvvM65rMzEyva9B6cAYEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKxzGl9vyNqLS0lK5XC7bbeAsJCYmel3zwgsveF0TEhLidU1RUZHXNZL01FNPeV3jy926m7u///3vTbKdSy65pEm2AztKSkoUGBh4xuWcAQEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFW1sNwD7BgwY4FPd//zP/3hd48u9b9esWeN1TVpamtc1krR//36f6gB4jzMgAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCm5G2MomJiV7X+HJTUUlyOBxe12RmZnpdk5yc7HUNgOaPMyAAgBUEEADACq8DaPPmzbrmmmsUEREhh8Oht956y2O5MUYPPfSQwsPD1aFDB8XHx2vv3r0N1S8AoJXwOoDKyso0dOhQLV26tNblixYt0lNPPaVnn31W27ZtU6dOnZSQkKDy8vJzbhYA0Hp4fRFCUlKSkpKSal1mjNGSJUv0+9//Xtddd50kadWqVerWrZveeustTZ48+dy6BQC0Gg36GVBeXp4KCgoUHx/vnudyuRQXF6fs7OxaayoqKlRaWuoxAQBavwYNoIKCAklSt27dPOZ369bNvex0GRkZcrlc7qlHjx4N2RIAoJmyfhVcenq6SkpK3NOBAwdstwQAaAINGkBhYWGSpMLCQo/5hYWF7mWnczqdCgwM9JgAAK1fgwZQdHS0wsLCtH79eve80tJSbdu2TcOGDWvITQEAWjivr4I7duyYcnJy3I/z8vK0Y8cOBQUFqWfPnpo9e7YeeeQR9e3bV9HR0Zo7d64iIiI0bty4huwbANDCeR1An376qa688kr347S0NElSSkqKVq5cqTlz5qisrEwzZszQkSNHNHz4cK1du1bt27dvuK4BAC2ewxhjbDfxc6WlpXK5XLbbaBYGDBjgdU1WVpbXNV27dvW6RlKNu2CcjZtvvtnrmuPHj3tdg2q+HEOS9Pe//93rmt27d3tdc8kll3hdg5ajpKSkzs/1rV8FBwA4PxFAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGCF13+OAU1n5MiRXteEhIR4XVNUVOR1jSQlJyf7VIemk5SU5FNdx44dva7ZsmWLT9vC+YszIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgpuRtjLGGK9rHnvssUboBM1B//79farz5Thas2aNT9vC+YszIACAFQQQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwgpuRNmPTp0/3usbhcHhds2XLFq9r0PTGjx/vdc2MGTN82tbmzZu9rvnoo4982hbOX5wBAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAV3Iy0GVuzZo3XNRdffLHXNQ8++KDXNZKUnJzsUx1848vPyRjj07b+8Y9/+FQHeIMzIACAFQQQAMAKrwNo8+bNuuaaaxQRESGHw6G33nrLY/nUqVPlcDg8psTExIbqFwDQSngdQGVlZRo6dKiWLl16xjGJiYnKz893T6+88so5NQkAaH28vgghKSlJSUlJdY5xOp0KCwvzuSkAQOvXKJ8Bbdq0SaGhoerfv79mzpyp4uLiM46tqKhQaWmpxwQAaP0aPIASExO1atUqrV+/Xo8//riysrKUlJSkysrKWsdnZGTI5XK5px49ejR0SwCAZqjBvwc0efJk978HDx6sIUOGKCYmRps2bdKYMWNqjE9PT1daWpr7cWlpKSEEAOeBRr8Mu3fv3goODlZOTk6ty51OpwIDAz0mAEDr1+gB9N1336m4uFjh4eGNvSkAQAvi9Vtwx44d8zibycvL044dOxQUFKSgoCAtWLBAEydOVFhYmHJzczVnzhz16dNHCQkJDdo4AKBl8zqAPv30U1155ZXux6c+v0lJSdGyZcu0c+dOvfDCCzpy5IgiIiI0duxYLVy4UE6ns+G6BgC0eF4H0OjRo+u8weH7779/Tg3hX3bv3u11jcPh8Lpm/PjxXtdI0qFDh7yueeyxx7yu6dq1q9c1p9+h42wNHDjQ65qmunHn2rVrva6JjY31aVshISFe1wwYMMDrGl+OcbQe3AsOAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVjhMXbe2tqC0tFQul8t2Gy3W7Nmzva4ZN26cT9saMWKE1zW+HG6+3OHb18O6qbbVnLfj67Z+/PFHr2t8uRu2L3c679+/v9c1km93b+cO3/9SUlJS51+55gwIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKzgZqRoUuPHj/e6JiQkpBE6qd306dObbFtNISoqyqe6rl27el1TXFzcJNtpypvTzpw50+ua5cuX+7St1oibkQIAmiUCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWNHGdgM4v2RmZtpuoU6t7UaSsbGxPtUNHz7c6xpffrbBwcFe17z44ote1/Tv39/rGjQ+zoAAAFYQQAAAKwggAIAVBBAAwAoCCABgBQEEALCCAAIAWEEAAQCsIIAAAFYQQAAAKwggAIAVBBAAwAqHMcbYbuLnSktL5XK5bLcBoJmqqqryusbXX3MXXnih1zW7d+/2aVutUUlJiQIDA8+4nDMgAIAVBBAAwAqvAigjI0OXXHKJAgICFBoaqnHjxmnPnj0eY8rLy5WamqquXbuqc+fOmjhxogoLCxu0aQBAy+dVAGVlZSk1NVVbt27VunXrdPLkSY0dO1ZlZWXuMXfffbfeffddrV69WllZWTp48KAmTJjQ4I0DAFq2c7oIoaioSKGhocrKytLIkSNVUlKikJAQvfzyy0pOTpZU/YHcwIEDlZ2drcsuu6zedXIRAoC6cBFCy9GoFyGUlJRIkoKCgiRJ27dv18mTJxUfH+8eM2DAAPXs2VPZ2dm1rqOiokKlpaUeEwCg9fM5gKqqqjR79mxdccUVGjRokCSpoKBA7dq1U5cuXTzGduvWTQUFBbWuJyMjQy6Xyz316NHD15YAAC2IzwGUmpqqr776Sq+++uo5NZCenq6SkhL3dODAgXNaHwCgZWjjS9GsWbP03nvvafPmzerevbt7flhYmE6cOKEjR454nAUVFhYqLCys1nU5nU45nU5f2gAAtGBenQEZYzRr1ixlZmZqw4YNio6O9lgeGxurtm3bav369e55e/bs0f79+zVs2LCG6RgA0Cp4dQaUmpqql19+WW+//bYCAgLcn+u4XC516NBBLpdLt956q9LS0hQUFKTAwEDdeeedGjZs2FldAQcAOH94FUDLli2TJI0ePdpj/ooVKzR16lRJ0h//+Ef5+flp4sSJqqioUEJCgp555pkGaRYA0HpwM1IALUplZaXXNWvWrPFpW9dff71PdajGzUgBAM0SAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVnA3bAAtii+/sqqqqnza1pVXXul1zebNm33aVmvE3bABAM0SAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKxoY7sBAPCGLzcW9fWey+np6V7XcDPSs8cZEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYwc1IAbQoycnJXtcsXrzYp20FBwf7VIezwxkQAMAKAggAYAUBBACwggACAFhBAAEArCCAAABWEEAAACsIIACAFQQQAMAKAggAYAUBBACwggACAFjBzUgBtCiZmZle12zZssWnbU2fPt2nOpwdzoAAAFYQQAAAK7wKoIyMDF1yySUKCAhQaGioxo0bpz179niMGT16tBwOh8d0++23N2jTAICWz6sAysrKUmpqqrZu3ap169bp5MmTGjt2rMrKyjzGTZ8+Xfn5+e5p0aJFDdo0AKDl8+oihLVr13o8XrlypUJDQ7V9+3aNHDnSPb9jx44KCwtrmA4BAK3SOX0GVFJSIkkKCgrymP/SSy8pODhYgwYNUnp6uo4fP37GdVRUVKi0tNRjAgC0fj5fhl1VVaXZs2friiuu0KBBg9zzp0yZoqioKEVERGjnzp26//77tWfPHq1Zs6bW9WRkZGjBggW+tgEAaKF8DqDU1FR99dVX+uijjzzmz5gxw/3vwYMHKzw8XGPGjFFubq5iYmJqrCc9PV1paWnux6WlperRo4evbQEAWgifAmjWrFl67733tHnzZnXv3r3OsXFxcZKknJycWgPI6XTK6XT60gYAoAXzKoCMMbrzzjuVmZmpTZs2KTo6ut6aHTt2SJLCw8N9ahAA0Dp5FUCpqal6+eWX9fbbbysgIEAFBQWSJJfLpQ4dOig3N1cvv/yyfvWrX6lr167auXOn7r77bo0cOVJDhgxplCcAAGiZvAqgZcuWSar+sunPrVixQlOnTlW7du304YcfasmSJSorK1OPHj00ceJE/f73v2+whgEArYPXb8HVpUePHsrKyjqnhgAA5weHqS9VmlhpaalcLpftNgAA56ikpESBgYFnXM7NSAEAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsIIAAgBYQQABAKxodgFkjLHdAgCgAdT3+7zZBdDRo0dttwAAaAD1/T53mGZ2ylFVVaWDBw8qICBADofDY1lpaal69OihAwcOKDAw0FKH9rEfqrEfqrEfqrEfqjWH/WCM0dGjRxURESE/vzOf57Rpwp7Oip+fn7p3717nmMDAwPP6ADuF/VCN/VCN/VCN/VDN9n5wuVz1jml2b8EBAM4PBBAAwIoWFUBOp1Pz5s2T0+m03YpV7Idq7Idq7Idq7IdqLWk/NLuLEAAA54cWdQYEAGg9CCAAgBUEEADACgIIAGAFAQQAsKLFBNDSpUvVq1cvtW/fXnFxcfrkk09st9Tk5s+fL4fD4TENGDDAdluNbvPmzbrmmmsUEREhh8Oht956y2O5MUYPPfSQwsPD1aFDB8XHx2vv3r12mm1E9e2HqVOn1jg+EhMT7TTbSDIyMnTJJZcoICBAoaGhGjdunPbs2eMxpry8XKmpqeratas6d+6siRMnqrCw0FLHjeNs9sPo0aNrHA+33367pY5r1yIC6LXXXlNaWprmzZunzz77TEOHDlVCQoIOHTpku7Umd+GFFyo/P989ffTRR7ZbanRlZWUaOnSoli5dWuvyRYsW6amnntKzzz6rbdu2qVOnTkpISFB5eXkTd9q46tsPkpSYmOhxfLzyyitN2GHjy8rKUmpqqrZu3ap169bp5MmTGjt2rMrKytxj7r77br377rtavXq1srKydPDgQU2YMMFi1w3vbPaDJE2fPt3jeFi0aJGljs/AtACXXnqpSU1NdT+urKw0ERERJiMjw2JXTW/evHlm6NChttuwSpLJzMx0P66qqjJhYWHmiSeecM87cuSIcTqd5pVXXrHQYdM4fT8YY0xKSoq57rrrrPRjy6FDh4wkk5WVZYyp/tm3bdvWrF692j3mH//4h5FksrOzbbXZ6E7fD8YYM2rUKHPXXXfZa+osNPszoBMnTmj79u2Kj493z/Pz81N8fLyys7MtdmbH3r17FRERod69e+vGG2/U/v37bbdkVV5engoKCjyOD5fLpbi4uPPy+Ni0aZNCQ0PVv39/zZw5U8XFxbZbalQlJSWSpKCgIEnS9u3bdfLkSY/jYcCAAerZs2erPh5O3w+nvPTSSwoODtagQYOUnp6u48eP22jvjJrd3bBPd/jwYVVWVqpbt24e87t166bdu3db6sqOuLg4rVy5Uv3791d+fr4WLFigESNG6KuvvlJAQIDt9qwoKCiQpFqPj1PLzheJiYmaMGGCoqOjlZubqwcffFBJSUnKzs6Wv7+/7fYaXFVVlWbPnq0rrrhCgwYNklR9PLRr105dunTxGNuaj4fa9oMkTZkyRVFRUYqIiNDOnTt1//33a8+ePVqzZo3Fbj01+wDCvyQlJbn/PWTIEMXFxSkqKkqvv/66br31VoudoTmYPHmy+9+DBw/WkCFDFBMTo02bNmnMmDEWO2scqamp+uqrr86Lz0Hrcqb9MGPGDPe/Bw8erPDwcI0ZM0a5ubmKiYlp6jZr1ezfggsODpa/v3+Nq1gKCwsVFhZmqavmoUuXLurXr59ycnJst2LNqWOA46Om3r17Kzg4uFUeH7NmzdJ7772njRs3evz9sLCwMJ04cUJHjhzxGN9aj4cz7YfaxMXFSVKzOh6afQC1a9dOsbGxWr9+vXteVVWV1q9fr2HDhlnszL5jx44pNzdX4eHhtluxJjo6WmFhYR7HR2lpqbZt23beHx/fffediouLW9XxYYzRrFmzlJmZqQ0bNig6OtpjeWxsrNq2betxPOzZs0f79+9vVcdDffuhNjt27JCk5nU82L4K4my8+uqrxul0mpUrV5pdu3aZGTNmmC5dupiCggLbrTWpe+65x2zatMnk5eWZv/3tbyY+Pt4EBwebQ4cO2W6tUR09etR8/vnn5vPPPzeSzOLFi83nn39uvv32W2OMMX/4wx9Mly5dzNtvv2127txprrvuOhMdHW1+/PFHy503rLr2w9GjR829995rsrOzTV5envnwww/NxRdfbPr27WvKy8ttt95gZs6caVwul9m0aZPJz893T8ePH3ePuf32203Pnj3Nhg0bzKeffmqGDRtmhg0bZrHrhlfffsjJyTEPP/yw+fTTT01eXp55++23Te/evc3IkSMtd+6pRQSQMcY8/fTTpmfPnqZdu3bm0ksvNVu3brXdUpO74YYbTHh4uGnXrp2JjIw0N9xwg8nJybHdVqPbuHGjkVRjSklJMcZUX4o9d+5c061bN+N0Os2YMWPMnj177DbdCOraD8ePHzdjx441ISEhpm3btiYqKspMnz691b1Iq+35SzIrVqxwj/nxxx/NHXfcYS644ALTsWNHM378eJOfn2+v6UZQ337Yv3+/GTlypAkKCjJOp9P06dPH3HfffaakpMRu46fh7wEBAKxo9p8BAQBaJwIIAGAFAQQAsIIAAgBYQQABAKwggAAAVhBAAAArCCAAgBUEEADACgIIAGAFAQQAsOL/AUrQG6HxKQG9AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"# prompt: build a neural network using keras for the mnist dataset also add a test where you show 10 random elemnts with the corresponding infered result. Try using the best approach to maximaixe accuracy\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Load the MNIST dataset\n",
"(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()\n",
"\n",
"# Preprocess the data\n",
"x_train = x_train.astype('float32') / 255.0\n",
"x_test = x_test.astype('float32') / 255.0\n",
"y_train = keras.utils.to_categorical(y_train, num_classes=10)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes=10)\n",
"\n",
"# Build the model\n",
"model = keras.Sequential([\n",
" keras.layers.Flatten(input_shape=(28, 28)),\n",
" keras.layers.Dense(128, activation='relu'),\n",
" keras.layers.Dropout(0.2),\n",
" keras.layers.Dense(10, activation='softmax')\n",
"])\n",
"\n",
"# Compile the model\n",
"model.compile(optimizer='adam',\n",
" loss='categorical_crossentropy',\n",
" metrics=['accuracy'])\n",
"\n",
"# Train the model\n",
"model.fit(x_train, y_train, epochs=20, batch_size=32, validation_split=0.2)\n",
"\n",
"# Evaluate the model\n",
"test_loss, test_acc = model.evaluate(x_test, y_test)\n",
"print('Test accuracy:', test_acc)\n",
"\n",
"# Show 10 random elements with the corresponding inferred result\n",
"random_indices = np.random.choice(x_test.shape[0], size=10, replace=False)\n",
"for index in random_indices:\n",
" image = x_test[index]\n",
" label = np.argmax(y_test[index])\n",
" prediction = np.argmax(model.predict(np.expand_dims(image, axis=0)))\n",
"\n",
" plt.imshow(image, cmap='gray')\n",
" plt.title(f\"True Label: {label}, Predicted Label: {prediction}\")\n",
" plt.show()\n"
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment