Last active
January 27, 2023 03:10
-
-
Save vicente-gonzalez-ruiz/b62fe635d566de1ace432d3e40f724b3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1. You must be using the Nvidia kernel (`nvidia-smi` should show info). This basically implies that the kernel recognizes the GPU. | |
2. Follow the instructions provided at https://www.tensorflow.org/install/pip: | |
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o Miniconda3-latest-Linux-x86_64.sh | |
bash Miniconda3-latest-Linux-x86_64.sh | |
source ~/.bashrc | |
conda create --name tf python=3.9 | |
conda activate tf | |
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 | |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ | |
mkdir -p $CONDA_PREFIX/etc/conda/activate.d | |
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh | |
pip install --upgrade pip | |
pip install tensorflow | |
3. Install CUDA: | |
sudo pacman -S cuda | |
export CUDA_DIR=/opt/cuda/ | |
export XLA_FLAGS="--xla_gpu_cuda_data_dir=/opt/cuda" | |
4. Remove miniconda installer: | |
rm ~/Miniconda3-latest-Linux-x86_64.sh | |
5. (optional) Install jupyter: | |
pip install jupyter | |
0. Remember to activate the virtual environment!! | |
conda activate tf | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment