Last active
June 22, 2020 03:00
-
-
Save victordibia/5394dcc919fc7e691c973f11703f737e to your computer and use it in GitHub Desktop.
How to Explain HuggingFace BERT for Question Answering NLP Models with TF 2.0 GradientTape
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_gradient(question, context, model, tokenizer): | |
"""Return gradient of input (question) wrt to model output span prediction | |
Args: | |
question (str): text of input question | |
context (str): text of question context/passage | |
model (QA model): Hugging Face BERT model for QA transformers.modeling_tf_distilbert.TFDistilBertForQuestionAnswering, transformers.modeling_tf_bert.TFBertForQuestionAnswering | |
tokenizer (tokenizer): transformers.tokenization_bert.BertTokenizerFast | |
Returns: | |
(tuple): (gradients, token_words, token_types, answer_text) | |
""" | |
embedding_matrix = model.bert.embeddings.word_embeddings | |
encoded_tokens = tokenizer.encode_plus(question, context, add_special_tokens=True, return_tensors="tf") | |
token_ids = list(encoded_tokens["input_ids"].numpy()[0]) | |
vocab_size = embedding_matrix.get_shape()[0] | |
# convert token ids to one hot. We can't differentiate wrt to int token ids hence the need for one hot representation | |
token_ids_tensor = tf.constant([token_ids], dtype='int32') | |
token_ids_tensor_one_hot = tf.one_hot(token_ids_tensor, vocab_size) | |
with tf.GradientTape(watch_accessed_variables=False) as tape: | |
# (i) watch input variable | |
tape.watch(token_ids_tensor_one_hot) | |
# multiply input model embedding matrix; allows us do backprop wrt one hot input | |
inputs_embeds = tf.matmul(token_ids_tensor_one_hot,embedding_matrix) | |
# (ii) get prediction | |
start_scores,end_scores = model({"inputs_embeds": inputs_embeds, "token_type_ids": encoded_tokens["token_type_ids"], "attention_mask": encoded_tokens["attention_mask"] }) | |
answer_start, answer_end = get_best_start_end_position(start_scores, end_scores) | |
start_output_mask = get_correct_span_mask(answer_start, len(token_ids)) | |
end_output_mask = get_correct_span_mask(answer_end, len(token_ids)) | |
# zero out all predictions outside of the correct span positions; we want to get gradients wrt to just these positions | |
predict_correct_start_token = tf.reduce_sum(start_scores * start_output_mask) | |
predict_correct_end_token = tf.reduce_sum(end_scores * end_output_mask) | |
# (iii) get gradient of input with respect to both start and end output | |
gradient_non_normalized = tf.norm( | |
tape.gradient([predict_correct_start_token, predict_correct_end_token], token_ids_tensor_one_hot),axis=2) | |
# (iv) normalize gradient scores and return them as "explanations" | |
gradient_tensor = ( | |
gradient_non_normalized / | |
tf.reduce_max(gradient_non_normalized) | |
) | |
gradients = gradient_tensor[0].numpy().tolist() | |
token_words = tokenizer.convert_ids_to_tokens(token_ids) | |
token_types = list(encoded_tokens["token_type_ids"].numpy()[0]) | |
answer_text = tokenizer.convert_tokens_to_string(token_ids[answer_start:answer_end]) | |
return gradients, token_words, token_types,answer_text |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment