Created
December 2, 2015 00:38
-
-
Save victorhcm/ad71ce5b9534a085b299 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The network is used for the video description experiments of S2VT [1]. | |
# Please consider citing S2VT [1] if you use this example in your work. | |
# | |
# [1] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, | |
# K. Saenko. "Sequence to Sequence - Video to Text." ICCV 2015. | |
# The data is prepared using framefc7_stream_text_to_hdf5.py | |
# It is in (32) parallel streams. | |
name: "s2vt" | |
layer { | |
name: "data" | |
type: "HDF5Data" | |
top: "cont_sentence" | |
top: "input_sentence" | |
top: "target_sentence" | |
top: "stage_indicator" | |
top: "frame_fc7" | |
include { phase: TRAIN } | |
hdf5_data_param { | |
source: "./hdf5/buffer_32_s2vt_80/train_batches/hdf5_chunk_list.txt" | |
batch_size: 80 | |
} | |
} | |
layer { | |
name: "data" | |
type: "HDF5Data" | |
top: "cont_sentence" | |
top: "input_sentence" | |
top: "target_sentence" | |
top: "stage_indicator" | |
top: "frame_fc7" | |
include { | |
phase: TEST | |
stage: "test-on-train" | |
} | |
hdf5_data_param { | |
source: "./hdf5/buffer_32_s2vt_80/train_batches/hdf5_chunk_list.txt" | |
batch_size: 80 | |
} | |
} | |
layer { | |
name: "data" | |
type: "HDF5Data" | |
top: "cont_sentence" | |
top: "input_sentence" | |
top: "target_sentence" | |
top: "stage_indicator" | |
top: "frame_fc7" | |
include { | |
phase: TEST | |
stage: "test-on-val" | |
} | |
hdf5_data_param { | |
source: "./hdf5/buffer_32_s2vt_80/valid_batches/hdf5_chunk_list.txt" | |
batch_size: 80 | |
} | |
} | |
layer { | |
name: "reshape_stg_indicator" # from 80 32 to 80 32 1 to concat | |
type: "Reshape" | |
bottom: "stage_indicator" | |
top: "stage_indicator_3axis" | |
reshape_param { | |
shape { | |
dim: 80 | |
dim: 32 | |
dim: 1 | |
} | |
} | |
} | |
layer { | |
name: "dropFc7" | |
type: "Dropout" | |
bottom: "frame_fc7" | |
top: "frame_fc7" | |
dropout_param { dropout_ratio: 0.5 } | |
include { stage: "dropFc7" } | |
} | |
layer { | |
name: "embed_encoder" | |
type: "InnerProduct" | |
bottom: "frame_fc7" | |
top: "embedded_input_frames" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 500 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
axis: -1 | |
} | |
} | |
layer { | |
name: "embedding" | |
type: "Embed" | |
bottom: "input_sentence" | |
top: "embedded_input_sentence" | |
param { | |
lr_mult: 1 | |
} | |
embed_param { | |
bias_term: false | |
input_dim: 46168 #youtube_movie_vocab+1 | |
num_output: 500 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
} | |
} | |
layer { | |
name: "drop_input_en" | |
type: "Dropout" | |
bottom: "embedded_input_sentence" | |
top: "embedded_input_sentence" | |
dropout_param { dropout_ratio: 0.5 } | |
include { stage: "dropEn" } | |
} | |
# unfactored model concat frames and sents | |
layer { | |
name: "concat" | |
type: "Concat" | |
concat_param { concat_dim: 2 } # concat along h | |
bottom: "embedded_input_frames" | |
bottom: "embedded_input_sentence" | |
bottom: "stage_indicator_3axis" | |
top: "embedded_input_video_sequence" | |
include { stage: "unfactored" } | |
} | |
layer { | |
name: "lstm1" | |
type: "LSTM" | |
bottom: "embedded_input_video_sequence" | |
bottom: "cont_sentence" | |
top: "lstm1" | |
include { stage: "unfactored" } | |
recurrent_param { | |
num_output: 1000 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "lstm2" | |
type: "LSTM" | |
bottom: "lstm1" | |
bottom: "cont_sentence" | |
top: "lstm2" | |
include { | |
stage: "unfactored" | |
stage: "2-layer" | |
} | |
recurrent_param { | |
num_output: 1000 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "lstm1" | |
type: "LSTM" | |
bottom: "embedded_input_frames" | |
bottom: "cont_sentence" | |
top: "lstm1" | |
include { stage: "factored" } | |
recurrent_param { | |
num_output: 1000 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "drop_lstm1" | |
type: "Dropout" | |
bottom: "lstm1" | |
top: "lstm1" | |
dropout_param { dropout_ratio: 0.5 } | |
include { stage: "dropLstm1" } | |
} | |
layer { | |
name: "concat" | |
type: "Concat" | |
concat_param { concat_dim: 2 } # concat along h | |
bottom: "lstm1" | |
bottom: "embedded_input_sentence" | |
bottom: "stage_indicator_3axis" | |
top: "lstm1_video_sequence" | |
include { stage: "factored" } | |
} | |
layer { | |
name: "lstm2" | |
type: "LSTM" | |
bottom: "lstm1_video_sequence" | |
bottom: "cont_sentence" | |
top: "lstm2" | |
include { stage: "factored" } | |
recurrent_param { | |
num_output: 1000 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "drop_lstm2" | |
type: "Dropout" | |
bottom: "lstm2" | |
top: "lstm2" | |
dropout_param { dropout_ratio: 0.5 } | |
include { stage: "dropLstm2" } | |
} | |
layer { | |
name: "predict" | |
type: "InnerProduct" | |
bottom: "lstm1" | |
top: "predict" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
exclude { stage: "2-layer" } | |
inner_product_param { | |
num_output: 46168 # youtube_movie_vocab + 1 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
axis: 2 | |
} | |
} | |
layer { | |
name: "predict" | |
type: "InnerProduct" | |
bottom: "lstm2" | |
top: "predict" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
include { stage: "2-layer" } | |
inner_product_param { | |
num_output: 46168 # youtube_movie_vocab + 1 | |
weight_filler { | |
type: "uniform" | |
min: -0.08 | |
max: 0.08 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
axis: 2 | |
} | |
} | |
layer { | |
name: "cross_entropy_loss" | |
type: "SoftmaxWithLoss" | |
bottom: "predict" | |
bottom: "target_sentence" | |
top: "cross_entropy_loss" | |
loss_weight: 20 | |
loss_param { | |
ignore_label: -1 | |
} | |
softmax_param { | |
axis: 2 | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "predict" | |
bottom: "target_sentence" | |
top: "accuracy" | |
include { phase: TEST } | |
accuracy_param { | |
axis: 2 | |
ignore_label: -1 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment